SERVICE MANUAL

4951A PROTOCOL ANALYZER

SERIAL. NUMBERS

This manual applies directly to instruments with serial numbers prefixed 2406A

COPYRIGHT HEWLETT-PACKARD COMPANY/COLORADO TELECOMMUNICATIONS DIVISION 1984 5070 Centennial Blvd., P.O. Box 7050, Colorado Springs, CO 80933

All Rights Reserved

Manual Part No. 04951-90002 Microfiche Part No. 04951-90005

iW

Printed April 1984 Printed in USA

TABLE OF CONTENTS

TO

Sec	ction		Page
ı	GENERAL IN	FORMATION	
	1-1. Introdu	ction	1-1
	1-2. Specific	cations	1-2
	1-3. Safety	Considerations	1-4
	1-4. Safety		1-4
		1A Description	1-4
	1-6. Access		1-5
		ories Available	1-5
	1-8. Options		1-5
II	INSTALLATIO	DN	
	2-1. Introdu	etion	2-1
	2-2. In	itial Inspection	2-1
	2-3. L	ine Voltage Selection	2-1
	2-4. G	rounding Requirements	2-1
	2-5. Tagging	for Service	2-2
	•	and Shipment	2-2
		riginal Packaging	2-2
		ther Packaging	2-2
	2-9. Turning	on the HP 4951A	2-3
Ш	OPERATION		
	3-1. Introduc	eton	3-1
	3-2. Operati	on	3-1
IV	PERFORMAN	CE VERIFICATION	
	4-1. Introduc	etion	4-1
	4-2. Equipme	ent Required	4-1
	4-3. Test Re	cord	4-1
	4-4. Perform	ance Verification Tests	4-1
	4-5. Perform	ance Verfication Flowchart	4-2
	4-6. Perform	ance Verification Test Descriptions	4-4
	4-7. Keyboa	rd Test	4-6
	4-8 Interfac	e Pod Test	4-7

HP 4951A Table of Contents

TABLE OF CONTENTS (cont)

Sec	tion	Page
V	ADJUSTMENTS	
	5-1. Introduction 5-2. Safety Considerations 5-3. Required Equipment 5-4. Instrument Access 5-5. Adjustment Procedures 5-6. CRT Yoke Centering Ring 5-7. Vertical Center 5-8. Vertical Height 5-9. Horizontal Centering 5-10 Focus 5-11 Intensity	5-1 5-1 5-1 5-2 5-4 5-4 5-5 5-5
VI	REPLACEABLE PARTS	
	6-1. Introduction 6-2. Replaceable Parts List 6-3. Ordering Information	6-1 6-1 6-1
VII	MANUAL CHANGES	
	7-1. Introduction 7-2. Manual Changes	7-1 7-1
VIII	SERVICE	
	8-1. Introduction 8-2. Maintenance 8-3. Theory of Operation 8-4. Troubleshooting 8-5. Recommended Test Equipment 8-6. General Handling of Static Sensitive Devices 8-7. Disassembly/Assembly Procedures 8-8. Disassembly Procedures 8-9. Assembly Procedures 8-10. Troubleshooting 8-11. Troubleshooting Procedures 8-12. Power Supply Troubleshooting 8-13. Tape I/O Analog Troubleshooting	8-1 8-1 8-1 8-1 8-2 8-3 8-3 8-1 8-11 8-15
	8-14. Read Amplifier Troubleshooting 8-15. Motor Speed Control Troubleshooting 8-18. A 2 Memory Board Troubleshooting Procedures	8-17 8-17 8-40
	9-10 Signature Analysis for A.2 Tana Controller, Ontion 001	9-12

TABLE OF CONTENTS (cont)

Section		Page	е
Appendix A	A GUIDE TO INTREPRETING ANSI		
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.	Introduction Symbol Outline General Rules Dependency Notation General Rules Sequence of Input Labels Sequence of Output Labels Dependency Notation Description Address (A) Control (C) Enable (EN) And (G) Mode (M) Negate (N) Reset (R) and Set (S) Or (V) Transmission (X) Interconnection (Z) Bistable Elements Monostable Elements Retriggerable Monostable Non-retriggerable Monostable Coders	1 1 1 2 2 2 2 3 3 4 5 6 6 6 7 8 9 10 10 10 11 11 12 12 12	
Appendix B	HP 18173A RS-232C/V.24/INTERFA	CE POD	
B-1. B-2. B-3. B-4. B-5. B-6. B-7. B-8. B-9. B-10. B-11. B-12. B-13. B-14.	Introduction Installation Operation Performance Verification HP 18173A Self Test Adjustments Replaceable Parts Service Theory of Operation SCC Receivers Drivers RS-232C Signal Mnemonics Troubleshooting	B-1 B-2 B-2 B-2 B-2 B-3 B-6 B-6 B-6 B-7 B-7 B-8 B-9	

HP 4951A Table of Contents

Section

TABLE OF CONTENTS (cont)

Page

5-3

5-4

Appendi× C	HP 18174A RS-449 INTERFACE POD	
C-1. C-2. C-3. C-4. C-5. C-6. C-7. C-8. C-9. C-10.	Introduction Installation Operaton Performance Verification	C-1 C-2 C-2 C-2 C-3 C-3 C-6 C-6
Appendix D	HP 1818OA RS-232C/V.24/RS-449/Interface Pod	
D-1. D-2. D-3. D-4. D-5. D-6. D-7. D-8.	Introduction Installation Operation Performance Verification HP 18180A Self Test Adjustments Replaceable Parts Service	D-1 D-2 D-2 D-2 D-2 D-3 D-3
	LIST OF ILLUSTRATIONS	
Figure	Title	Page
1-1. 1-2. 2-1. 4-1. 5-1.	HP 4951A Protocol Analyzer HP 4951A Interface Pod Accessories Interface Pod Connection Performance Verification Flowchart HP 4951A Adjustment Points	1-0 1-0 2-3 4-3 5-3

HP 4951A Adjustment Test Pattern

CRT Yoke Centering Rings

5-2.

5-3.

LIST OF ILLUSTRATIONS (cont)

Figure	Title	Page
6-1.	HP 4951A Case and Cover	6-5
6-2.	HP 4951A Rear Panel Assemby	6-6
6-3.	HP 4951A Internal Assemblies	6-6
6-4.	HP 4951A Front Panel Assembly	6-7
8-1.	Performance Verification Flowchart	8-10
8-2.	Power Supply Troubleshooting Flowchart	8-14
8-3.	HP 4951A Overall Block Diagram	8- 5 3
8-4.	A 1 Main Board Component Locator	8-54
8-5.	A 1 Power Supply Schematic	8-55
8-6.	A 1 CPU and DLC Schematic	8-57
8-7.	A2 Memory Board Component Locator	8-58
8-8.	A21/O Timer Schematic	8-59
8-9.	A1 Dual Port RAM & Arbiter Schematic	8-61
8-10.	A1 CRT Controller Schematic	8-63
8-11.	A2 ROM and RAM Schematic	8-65
8-12.	A1 Deflection Circuit Schematic	8-67
8-13.	Keyboard Diagram	8-69
8-14.	A3 Tape Board Component Locator	8-70
8-15.	A3 Tape Board CPU Schematic	8-71
8-16.	A3 Tape Board State Machine Schematic	8-73
8-17.	A3 Read Amplifier and Speed Control Schematic	8-75
1.	ANSI Symbol Outline	1
2.	Dependency Notation Layout	3
3.	Address Dependency	4
4.	Control Dependency	5
5.	Enable Dependency	6
6.	And Dependency	6
7.	Mode Dependency	7
8.	Negate Dependency	8
9.	Reset/Set Dependency	9
10.	Or Dependency	10
11.	Transmission Dependency	10
12.	Interconnection Dependency	10
B-1.	HP 18173A Interface Pod	B-1
B-2.	HP 18173A Exploded View	B-4
B - 3.	HP 18173A Component Locator	B-14
B-4.	HP 18173A Interface Pod Schematic	B-15
C-1.	HP 18174A Interface Pod	C-1
C-2.	HP 18174A Exploded View	C-4
C-3.	HP 18174A Compnent Locator	C-14
C-4.	HP 18174A Interface Pod Schematic	C-15
D-1	HP 18180A Interface Pod	D-1
D-2.	HP 18180A Exploded View	D-4

HP 4951A List of Tables

LIST OF TABLES

Table	Title	Page
1-1	HP 4951A Instrument Specifications	1-2
1-2.	HP 4951A Operating Characteristics	1-3
2-1.	Power Cable Descriptions	2-4
3-1.	Top Level Menu	3-1
4-1.	Failure Display	4-2
4-2.	Performance Verification Test Record	4-8
6-1.	Reference Designations and Abbreviations	6-2
6-2.	Manufacturers Code List	6-3
6-3.	HP 4951A Case and Cover	6-4
6-4.	HP 4951A Rear Panel Assembly	6-6
6-5.	HP 4951A Internal Assembly	6-6
6-6.	HP 4951A Front Panel Assembly	6-6
6-7.	Replaceable Parts	6-8
7-1.	Manual Changes	7-1
8-1.	Recommended Test Equipment for Troubleshooting	8-2
8-2.	Simulate Test for Option 001	8-11
8-3.	Microprocessor No Op Signatures	8-17
8-4.	I/O Timer Signature Analysis	8-18
8-5.	Arbiter Signature Analysis	8-19
8-6.	Arbiter Signature Analysis	8-20
8 - 7.	Arbiter Signature Analysis	8-21
8-8.	CRTC RAM Signature Analysis	8-22
8-9.	CRTC RAM Signature Analysis	8-23
8-10.	CRT Controller Signature Analysis	8-24
8-11.	Memory Decoder Signature Analysis	8-25
8-12.	CRTC RAM Signature Analysis	8-27
8-13.	CRTC RAM Signature Analysis	8-28
8-14.	CRTC RAM Signature Analysis	8-29
8 - 15.	CRT Controller Signature Analysis	8-32
8-16.	CRT Controller Signature Analysis	8-33
8-17.	CRT Controller Signature Analysis	8-34
8-18.	CRT Controller Signature Analysis	8-35
8-19.	CRT Controller Signature Analysis	8-36
8-20.	Deflection Signature Analysis	8-37
8-21.	DLC Signature Analysis	8-39
8-22.	Tic Clock Signature Analysis	8-40
8-23.	Tic Clock Signature Analysis	8-41
8-24.	Microprocessor No Ops	8-43
8-25	Microprocessor No Ops	8-44
8-26.	I/O Timer Signature Analysis	8-45
8-27.	State Machine/Bit Timer Signature Analysis	8-46
8-28.	State Machine/Bit Timer Signature Analysis	8-47
8-29.	State Machine/Bit Timer Signature Analysis	8-48
8-30.	State Machine/Bit Timer Signature Analyis	8-49
8-31.	State Machine/Bit Timer Signature Analysis	8-50
8-32.	DMA Signature Analysis	8-51

LIST OF TABLES

Table	Title	Page
1 – 1	HP 4951A Instrument Specifications	1-2
1-2.	HP 4951A Operating Characteristics	1-3
2-1.	Power Cable Descriptions	2-4
3-1.	Top Level Menu	3-1
4-1.	Failure Display	4-2
4-2.	Performance Verification Test Record	4-8
6 - 1.	Reference Designations and Abbreviations	6-2
6-2.	Manufacturers Code List	6-3
6-3.	HP 4951A Case and Cover	6-4
6-4.	HP 4951A Rear Panel Assembly	6-6
6-5.	HP 4951A Internal Assembly	6~6
6-6.	HP 4951A Front Panel Assembly	6-6
6-7.	Replaceable Parts	6-8
7-1.	Manual Changes	7-1
8-1.	Recommended Test Equipment for Troubleshooting	8-2
8-2.	Simulate Test for Option 001	8-11
8-3.	Microprocessor No Op Signatures	8-17
8-4.	I/O Timer Signature Analysis	8-18
8-5.	Arbiter Signature Analysis	8-19
8-6.	Arbiter Signature Analysis	8-20
8-7.	Arbiter Signature Analysis	8-21
8-8.	CRTC RAM Signature Analysis	8-22
8-9.	CRTC RAM Signature Analysis	8-23
8-10.	CRT Controller Signature Analysis	8-24
8-11.	Memory Decoder Signature Analysis	8-25
8-12.	CRTC RAM Signature Analysis	8-27
8-13.	CRTC RAM Signature Analysis	8-28
8-14.	CRTC RAM Signature Analysis	8-29
8-15.	CRT Controller Signature Analysis	8-32
8-16.	CRT Controller Signature Analysis	8-33
8-17.	CRT Controller Signature Analysis	8-34
8-18.	CRT Controller Signature Analysis	8-35
8-19.	CRT Controller Signature Analysis	8-36
8-20.	Deflection Signature Analysis	8-37
8-21.	DLC Signature Analysis	8-39
8-22.	Tic Clock Signature Analysis	8-40
8-23.	Tic Clock Signature Analysis	8-41
8-24.	Microprocessor No Ops	8-43
8-25	Microprocessor No Ops	8-44
8-26.	I/O Timer Signature Analysis	8-45
8-27.	State Machine/Bit Timer Signature Analysis	8-46
8-28.	State Machine / Bit Timer Signature Analysis	8-47
8-29.	State Machine/Bit Timer Signature Analysis	8-48
8-30.	State Machine / Bit Timer Signature Analysis	8-49
8-31.	State Machine/Bit Timer Signature Analysis	8-50
8-32.	DMA Signature Analysis	8-51

LIST OF TABLES (cont)

1.	ANSI Dependency Notation	4
2.	Exclusive OR Truth Table	8
3.	General Qualifying Symbols	13
B-1.	HP 18173A Manufacturers Code List	B-3
B – 2.	HP 18173A Replaceable Parts List	B-5
B - 3.	RS-232C/V.24 Signal Mnemonics	B-8
B-4.	DCE Test Program	B-10
B – 5.	DTE Test Program	B-12
C-1.	HP 18174A Manufacturers Code List	C-3
C - 2.	HP 18174A Replaceable Parts List	C-5
C-3.	RS-449 Description	C-7
C-4.	RS-449 Signal Mnemonics	C-8
C - 5.	DCE Test Program	C-10
C-6.	DTE Test Program	C-12
D - 1 .	Replaceable Parts List	D-3

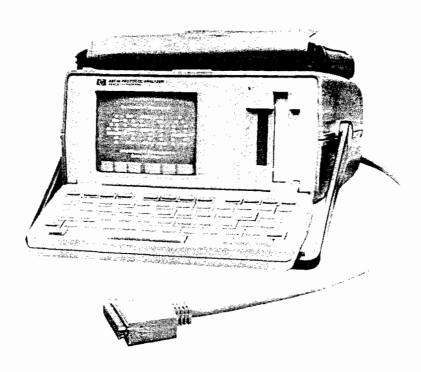


Figure 1-1. HP 4951A Protocol Analyzer

Figure 1-2. HP 4951A Protocol Analyzer Accessories

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

This manual contains information for the HP 4951A Protocol Analyzer, the HP 18173A RS-232C/V.24/the 18174A RS-449 Interface Pod, and the HP 18180A RS-232C/V.24. Basic operating and detailed service information are included. Figure 1-1 shows the Protocol Analyzer and Figure 1-2 shows the available accessories. The manual is divided into eight sections and has four appendixes.

Section I, General Information contains specifications and a brief description of the HP 4951A Protocol Analyzer. General information for each of the Interface Pod accessories is contained in the appropriate appendix.

Section II, Installation gives instructions for setting up the Protocol Analyzer. Installation information for each of the Interface Pod accessories is contained in the appropriate appendix.

Section III, **Operation** describes basic operating procedures. Operating information for each of the Interface Pod accessories is contained in the appropriate appendix.

Section IV, Performance Verification details the test procedures that verify instrument performance. The complete Performance Verification procedure is contained in this section with the applicable tests repeated in the appropriate appendix.

Section V, **Adjustments** gives procedures for making all adjustments to the Protocol Analyzer. There are no adjustments to make on the Interface Pods.

Section VI, **Replaceable Parts** provides information required to order all parts and assemblies for the HP 4951A. Replaceable parts for the accessories are contained in the appropriate appendixes.

Section VII, **Manual Changes** contains information to backdate the manual for instruments with serial numbers earlier than listed on the Title Page.

Section VIII. Service provides service and troubleshooting information. This includes Theory of Operation, Block Diagrams, Troubleshooting Procedures, Component Locators, and Schematics. The service information for each accessory is located in the appropriate appendix.

Table 1-2. HP 4951A Operating Characteristics

- * Full ASCII keyboard.
- * Auto-Configure. Automatically determines a line's protocol, data code, speed, parity, and error checking.
- * Softkey guided measurements. Simplifies setup and programming.
- * 63 triggers. Trap on characters, error conditions, timers, and/or lead changes.
- * 5 timers and counters. Count events and measure time intervals between triggers.
- * Non-volatile memory. 32 Kbytes for automatically storing data.

 Non-volatile memory retains setups, monitors, and simulates programs.
- * Five display formats. DTE Only, DCE Only, Two line (DTE and DCE), Data and State (DTE and DCE with lead timing), Frame and Packet (decoding of ISO level 2 and 3).
- * Remote. Transfer data, setups, monitor and simulate menus to and from another HP 4951A or another HP Protocol Analyzer.
- * BERT. Measure bit errors, block errors, and percent error free seconds.
- * Tape Storage (Option 001). Mass storage of data, setups, programs, and measurements.

HP 4951A General Information

Appendix A, Guide to Interpreting ANSI provides a basic description of ANSI symbology.

Appendix B, HP 18173A RS-232C/V.24 Interface Pod contains description of the instrument, Replaceable Parts, Theory of Operation, Troubleshooting, Component Locator, and Schematic.

Appendix C, HP 18174A RS-449 Interface Pod contains a description of the instrument, Replaceable Parts, Theory of Operation, Troubleshooting, Component Locator, and Schematic.

Appendix D, HP 18180A RS-232C/V.24/RS-449 Interface Pod contains a description of the instrument.

1-2. SPECIFICATIONS

Instrument specifications are listed in Table 1-1. Table 1-1 provides the performance standards or limits of this instrument. Instrument characteristics are described in Table 1-2.

Table 1-1. HP 4951A Instrument Specifications

Weight:

Net, 5.7 kg (12.6 lb)

Shipping, 9.5 kg (21 lb)

Size:

Height 11.2 cm (4.4 in) Width 25.9 cm (10.2 in)

Depth 28.6 cm (11.3 in)

Temperature:

Operating 0° C to $+55^{\circ}$ C $(32^{\circ}$ F to 131° F)*

Storage -40° C to $+75^{\circ}$ C (-40° F to $+167^{\circ}$ F)

*Tape drive should only be operated from

 $+5^{\circ}$ C to $+40^{\circ}$ C ($+41^{\circ}$ F to $+104^{\circ}$ F)

Altitude:

Operating - 4600 m (15000 ft)

Storage - 15300 m (50000 ft)

Power Requirements:

110, 220 VAC, -15% to +15%; 48-66 Hz single phase;

Typical less than 15 VA, maximum less than 30 VA

SECTION II INSTALLATION

2-1. INTRODUCTION

This section provides information to install and power the HP 4951A Protocol Analyzer. Interface Pod installation information is contained in the respective appendixes.

2-2. INITIAL INSPECTION

Inspect the Protocol Analyzer and accessories for any physical damage sustained in transit. Check that all the items that should accompany the Protocol Analyzer have been received. If accessories are missing or if the unit is received in a damaged condition, notify the nearest HP Sales and Support Office.

2-3. LINE VOLTAGE SELECTION

Before plugging in the HP 4951A, check the line voltage selection on the rear panel above the power jack. It should be correctly configured for your area. The type of fuse is also dependent on the line voltage. To select the line voltage, pry open the cover to the line voltage selector on the back of the HP 4951A. When the wheel is exposed, turn it to the correct voltage and press the cover closed. The fuse does not need to be changed. Table 2-1 lists line voltages and the corresponding HP power cables.

2-4. GROUNDING REQUIREMENTS

The HP 4951A is equipped with a three conductor power cable which when connected to the power outlet, grounds the Protocol Analyzer. Do not operate the Protocol Analyzer from a power outlet that has no ground protection.

1-6. ACCESSORIES

Descriptions of the Interface Pod accessories are located in their respective appendix.

1-7. ACCESSORIES AVAILABLE

HP 18172A	Soft vinyl carrying case for extra Interface Pods
HP 18173A	RS-232C/V.24
HP 18174A	RS-449 Interface Pod
HP 18180A	Combination RS-232C/V.24 and RS-449 Interface Pod
HP 98200A	Certified blank tape cartridges (set of five)

1-8. OPTIONS

Option 001	Integral Tape Unit
Option 003	JIS-8 Character Set
Option 100	Adds accessory HP 18173A
Option 101	Adds accessory HP 18174A
Option 102	Adds accessory HP 18180A
Option 910	Extra Operating and Service Manuals
Option 916	Extra Operating Manual

HP 4951A General Information

1-3. SAFETY CONSIDERATIONS

When internal circuits are exposed, caution must be used. Observe all warnings and cautions marked on the instrument or listed in the procedures.

WARNING

8000 volts may be present in the HP 4951A circuitry even when turned off.

CAUTION

The internal circuits of this instrument are static sensitive. Refer to paragraph 8-6 for handling procedures.

1-4. SAFETY SYMBOLS

A complete list of safety symbols used in this manual is given on the page preceding the Table of Contents. Included are symbols and descriptions.

1-5. HP 4951A DESCRIPTION

The HP 4951A is a complete field service data communications Protocol Analyzer. It is small, lightweight and easy-to-use. It contains the essential features needed to verify proper data equipment installation and maintenance. It correctly diagnoses system operating problems and assists in their correction. The Protocol Analyzer can simulate network components, monitor data transmission, and perform bit error tests. Data analysis may be done real time or in the post-processing mode. The 32 Kbytes of nonvolatile memory stores all data, timing, and lead status information. Additional nonvolatile memory keeps all test setups as well as monitor and simulate programs. For long term storage of data and important test programs, the optional mass storage cassette tape (Option 001) stores an additional 512 Kbytes of information.

Six software defined keys (softkeys) provide operator interface to the extensive troubleshooting capability of the HP 4951A. Whenever an instruction indicates use of a soft key, its mnemonic will be enclosed by < >. The user friendly interface, combined with auto-configuration of all data link parameters, allows many complex tasks to be performed quickly and easily, resulting in less network downtime. The HP 4951A has 63 real time triggers and five timers and counters.

HP 4951A General Information

1

A)

HP 4951A Installation

2-5. TAGGING FOR SERVICE

If the instrument is returned to Hewlett-Packard for service, complete one of the blue repair tags located in the back of this manual and attach it to the instrument.

2-6. STORAGE AND SHIPMENT

2-7. ORIGINAL PACKAGING

Containers and materials identical to those used in factory packaging are available through any Hewlett-Packard Sales offices. If the instrument is returned to Hewlett-Packard for service, complete and attach the blue repair tag. Mark the container FRAGILE to ensure careful handling. In any correspondence, refer to the instrument by model and serial number.

2-8. OTHER PACKAGING

Use these general instructions for packaging with commercially available materials:

- 1. Wrap the instrument in an antistatic material. If shipping to a Hewlett-Packard Sales or Service Office, include a completed blue repair tag.
- 2. Use a strong shipping container such as a double wall carton with 275 burst test.
- 3. Use a layer of shock absorbing material, 70-100 mm (3-4 inches)thick. This provides a firm cushion and prevents movement inside the container.
- 4. Seal the carton securely and mark it FRAGILE to ensure careful handling.

2-9. TURNING ON THE HP 4951A

CAUTION

Do not plug in the instrument until you are sure that the line voltage selection is correct.

CAUTION

Turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

Connect the Interface Pod and press the switch on the back of the instrument to ON. The HP 4951A Protocol Analyzer will automatically perform the Performance Verification test sequence. If the Performance Verification passes, then the top level menu is displayed and the Protocol Analyzer is ready for operation. If Performance Verification does not pass, refer to the troubleshooting procedure in Section VIII.

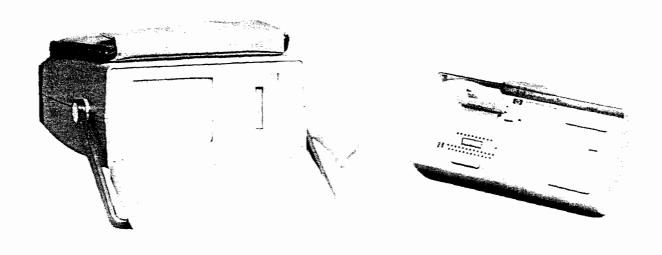


Figure 2-1. Interface Pod Connection

SECTION III OPERATION

3-1. INTRODUCTION

This section contains a brief description of operating procedures for the HP 4951A. Complete operating procedures for the Protocol Analyzer and the Interface Pod accessories are located in the Operating Manual (HP 04951-90003). Abbreviated operating procedures for the Interface Pod accessories HP 18173A, HP 18174A, and HP 18180A are located in the respective appendixes.

3-2. OPERATION

Six software defined keys, or softkeys, provide operator access to the capabilities of the HP 4951A. When the instrument is turned on, an automatic self test is performed, and the Top Level Menu is displayed. The softkey descriptions appear on the display. Generally, softkeys will be enclosed with <> throughout this manual. Table 3-1 describes the Top Level Menu softkey mnemonics. To select a particular procedure, press the dark gray key on the keyboard corresponding to the softkey displayed on the CRT.

Table 3-1. Top Level Menu

AUTO-CONF	Automatic configuring for on-line monitoring.
SETUP	Manual configuring for monitoring or simulating.
MONITOR	Programs made for monitoring.
SIMULATE	Programs DTE or DCE simulation procedures.
RUN MENU	Executes all tests: monitoring, simulation, or BERT.
EXAMINE DATA	Displays the buffer contents after a test.
MORE	Press MORE on keyboard to display rest of menu.
BERT	Configures Bit Error Rate Tests in conjunction with another HP Protocol Analyzer.
REMOTE	Transmits and receives menu setups and data.
MASS STORE	Provides tape control and catalog functions.
RESET	Sets all menus to the default conditions and clears the buffer.
SELF TEST	Provides access to self test.

Table 2-1. Power Cable Descriptions

Plug Type	Cable HP Part Number	C	Plug Description	Cable Length (inches)	Cable Color	For Use In Country
250V	8120-1351 8120-1703	0	Straight *BS1363A 90°	90 90	Mint Gray Mint Gray	United Kingdom, Cyprus, Nigeria, Rhodesia, Singapore
250V	8120-1369 8120-0696	0 4	Straight *NZSS198/ASC112 90°	79 87	Gray Gray	Australia, New Zealand
250V	8120-1689 8120-1692	7 2	Straight *CEE7-Y11 90°	79 79	Mint Gray Mint Gray	East and West Europe, Saudi Arabia, Egypt, So. Africa, India :unpolarized in many nations)
125V	8120-1348 8120-1398 8120-1754 8120-1378 8120-1521 8120-1676	5 7 1 6 2	Straight *NEMA5-15P 90° Straight *NEMA5-15P Straight *NEMA5-15P 90° Straight *NEMA5-15P	80 80 36 80 80 36	Black Black Black Jade Gray Jade Gray Jade Gray	United States, Canada, Japan (100V or 200V), Mexico, Philippines, Taiwan
250V	8120-2104	3	Straight *SEV1011 1959-24507 Type 12	79	Gray	Switzerland
250V	8120-0698	6	Straight *NEMA6-15P			United States Canada
220V	8120-1957 8120-2956	2 3	Straight *DHCK 107 90°	79 79	Gray Gray	Denmark
250V	8120-1860	6	Straight *CEE22-VI (Systems Cabinet use)			

^{*}Part number shown for plug is industry identifier for plug only. Number shown for cable is HP Part Number for complete cable including plug. E = Earth Ground; L = Line; N = Neutral

HP 4951A Operation

The Top Level Menu accesses all of the other menus. The softkeys enable you to perform all of the instrument functions.

EXIT acts like a half key during a testing sequence. Press EXIT during a test sequence to stop it at any time. The Top Level Menu will be displayed.

Press MORE to see the second or third set of softkeys in any menu. A small vertical MORE appears at the lower right of the CRT to prompt you whenever there is another set of softkeys in any menu.

The memory is nonvolatile. Turn off the Protocol Analyzer only when the display shows the top level menu to save setups, data, and programs.

CAUTION

Always turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

SECTION IV PERFORMANCE VERIFICATION

4-1. INTRODUCTION

Each time the HP 4951A is powered on, the Performance Verification tests are run. The tests are completed in about 10 seconds and the internal circuits of the instrument do not have to be accessed by the operator. If the HP 4951A fails any of the tests, refer to the Service Section. When the Performance Verification tests are complete and there are no failures, the Top Level Menu is displayed.

Figure 4~1 is a flowchart describing the Performance Verification tests done at instrument turn on. After the automatic test sequence, the operator may manually enter and perform tests for the interface Pod or the Keyboard or begin using the HP 4951A. When installed, option 001, the Tape Board is automatically tested at power on.

4-2. EQUIPMENT REQUIRED

No equipment is required to perform the Performance Verification tests.

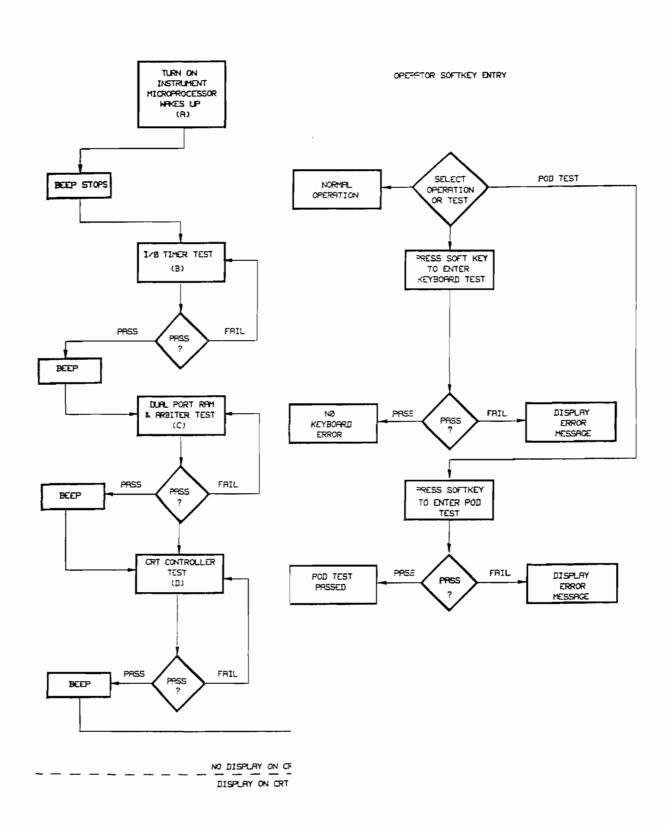
4-3. TEST RECORD

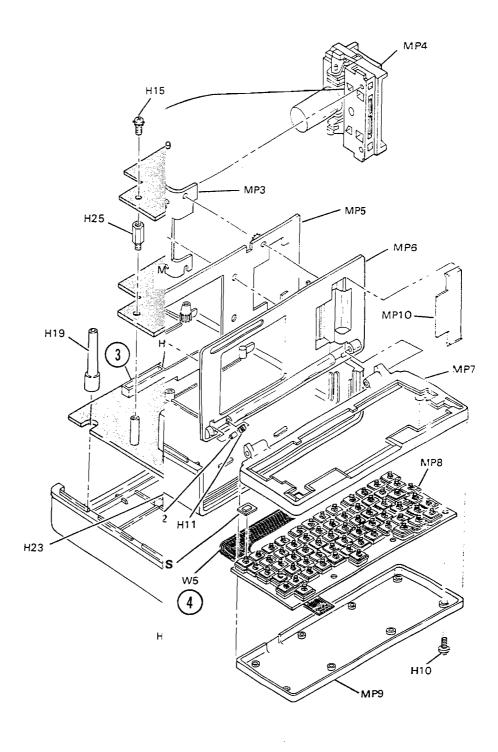
Test results and component failures may be recorded on the test record located at the end of this section. Test results should be used for comparison during maintenance or troubleshooting.

4-4. PERFORMANCE VERIFICATION TESTS

This test sequence verifies functional operation of 95% of the HP 4951A Protocol Analyzer. There are 10 parts to the automatic test sequence. To begin testing, turn on the HP 4951A. The tests outlined in Table 4-1 are automatically performed. The operator may then manually select the Keyboard test (paragraph 4-7) or the interface Pod test (paragraph 4-8), or start using the Protocol Analyzer.

Table 4-1. Failure Display


	TEST	FAILURES		
	ROM 2	00		
	ROM 8-1	00		
	ROM 8-2	00		
	RAM 2	00		
	RAM 6	00		
	RAM 8	00		
	RAM A	00		
	RAM C	00		
	RAME	00		
	DLC	00		
	TAPE	00		
Number of tests = (total number of tests performed)				
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		


NOTE

Hold down the EXIT(HALT) key to exit the program.

4-5. PERFORMANCE VERIFICATION FLOWCHART

The flowchart in Figure 4-1 describes the Performance Verification tests. The tests are automatically performed when the instrument is turned on. After the automatic Performance Verification tests, the operator entered tests are described.



Figure 6-31A Front Panel Assembly

4-6. PERFORMANCE VERIFICATION TEST DESCRIPTIONS

The following is a description of the Performance Verification tests done automatically at instrument turn on. They are referenced to the flowchart in Figure 4-1 by the letter preceding each test. Troubleshooting procedures are located in the Service Section.

The Top Level menu is displayed when the instrument passes the Performance Verification tests. If there is a failure, the Failure Table will remain on the display. An O1 will appear in the Failure column by the failed test. Press EXIT(HALT) to access the Top Level menu.

A. TURN ON INSTRUMENT/MICROPROCESSOR WAKES UP

Test Failure Code

continuous beep

Description

When the beep stops, the microprocessor and the power supply are working.

B. I/O TIMER

)11.

no beep

Description

Checks that the I/O timer is functioning correctly.

C. DUAL PORT RAM AND ARBITER

Test Failure Code

no beep

Description

Tests the operation of dual port RAM and arbiter circuit.

D. CRT CONTROLLER

Test Failure Code

no beep no CRT display

Description

Checks operation of the deflection circuits.

E. ROM

Test Failure Code

The ROM test is performed once at turn on. If there are any ROM failures, the Failure Table will flash on the screen, then the Top Level Menu will be displayed.

Description

The microprocessor checks all ROMs (except ROM 0000) and places pass/fail information in memory. If any Rom device fails, the Test Failure Table is displayed. The operator may press EXIT(HALT) to access the Top Level Menu.

F. RAM

Test Failure Code

The RAM test is performed once at turn on. If there are any RAM failures, the Failure Table will flash on the screen, then the Top Level Menu will be displayed.

Description

The microprocessor checks all RAM and places pass/fail information in memory. If any RAM device fails, the Test Failure Table is displayed. The operator may press EXIT(HALT) to access the Top Level Menu.

HP 4951A Performance Verification

G. DATA LINK CONTROL CIRCUITRY (DLC)

Test Failure Code

Number of times the test fails is displayed under FAILURES column.

Description

Microprocessor checks the DLC for proper operation.

H. TAPE I/O

Test Failure Code

Bad tape I/O

Description

Checks digital circuitry

4-7. KEYBOARD TEST

Description

The Keyboard test is performed by the operator. It verifies that the HP 4951A correctly identifies each key pressed on the keyboard.

Setup

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELFTEST>.
- 4. Select <KBD TEST>.

Procedure

- 1. Press any key on the keyboard.
- The display should read:

LAST KEY PRESSED: "(name of key pressed is displayed)"

NOTE

The cursor down and RETURN keys effectively make the cursor perform the same operation. When the RETURN key is pressed, CURSOR DOWN is displayed.

3. Press EXIT(HALT) to end the test and display the selftest menu.

()

4-8. INTERFACE POD TEST

Description

This test has two parts: checks that there is an Interface Pod connected to the Protocol Analyzer and verifies that the data lines work.

Set Up

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELFTEST>.
- 4. Select <EXT DLC>.

Procedure

- When the <EXT DLC> softkey is pressed, the Interface Pod test is automatically performed.
- 2. Press EXIT(HALT) to return to the selftest menu.

Table 4-2. Performance Verification Test Record

Date Opera	of Test ator		
TEST		PASS	FAIL
Micro	Microprocessor		
I/O T	I/O Timer		
Dual F	Dual Port RAM and Arbiter		
CRT	CRT Controller		
ROM	Numbers of failed ROM:		
RAM	Numbers of failed RAM:		
DLC			
Tape	Tape I/O		
Interf	Interface Pod		
Keybo	Keyboard		
Numb	Number of tests performed		

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

This section contains adjustment procedures for the HP 4951A Protocol Analyzer. The adjustments in this section have no affect on the Performance Verification Tests.

5-2. SAFETY CONSIDERATIONS

For your protection and to avoid damage to the instrument, all listed warnings and cautions must be followed. Whenever internal instrument circuits are exposed, exercise caution. Follow the correct procedures for handling static sensitive devices (see paragraph 8-6).

WARNING

8000 volts can be present in the HP 4951A circuitry even when turned off.

5-3. REQUIRED EQUIPMENT

To perform the adjustments an insulated screwdriver and a hexagonal plastic core adjuster.

WARNING

When adjustments are in the high voltage circuitry, tools should be insulated or made of non-conductive materials.

Safety glasses should be worn when replacing the CRT.

5-4. INSTRUMENT ACCESS

Access the instrument's internal circuits and assemblies by removing the case top. The case top is secured by four screws located on the bottom of the instrument. Follow the procedure described in the Disassembly Procedure located in Section VIII, paragraph 8-8.

5-5. ADJUSTMENT PROCEDURES

Adjustments should be performed in the sequence given. There are six adjustment procedures for the HP 4951A. The CRT Yoke Centering Ring and Pin Cushion adjustments should only be performed after repairs have been made in the deflection circuit. The adjustments are as follows:

CRT Yoke Centering Ring Vertical Centering Vertical Height Horizontal Centering Focus Intensity

To perform the adjustments, remove the case top as described in paragraph 8-8. Perform the following procedures.

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELFTEST>.
- 4. Select < CRT TEST>.
- Select <TEST PTRN>.
- 6. Perform the adjustment procedures.
- 7. To exit the test pattern, press EXIT/(HALT) 3 times.

Figure 5-1 identifies the location of the adjustment points. Figure 5-2 is the test pattern used to perform all adjustments. Perform each adjustment in the order given.

WARNING

8000 volts can be present in the HP 4951A circuitry even when turned off.

Safety glasses should be worn.

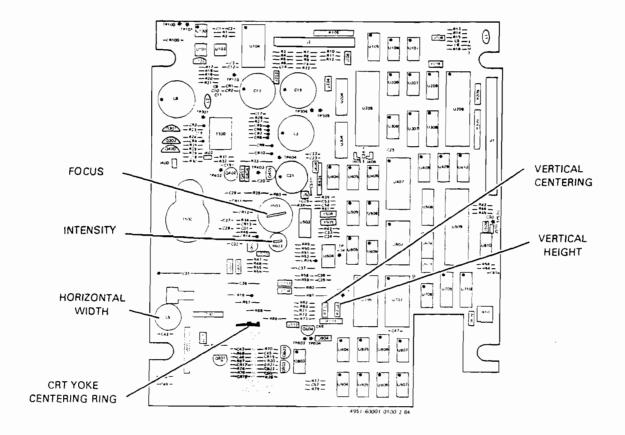


Figure 5-1. HP 4951A Adjustment Points

Figure 5-2. HP 4951A Adjustment Test Pattern

5-6. CRT YOKE CENTERING RING

Description

This adjustment centers the test pattern on the CRT display. Perform this adjustment only after performing repairs in the deflection circuit. Figure 5-3 shows the location of the centering rings.

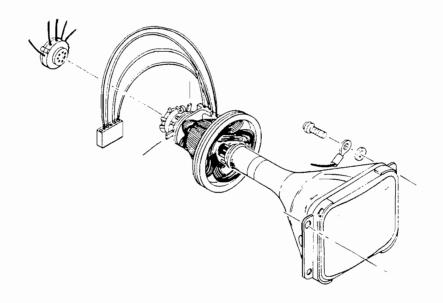


Figure 5-3. CRT Yoke Centering Rings

Procedure

- 1. Rotate the centering rings to center the test pattern crosshair horizontally and vertically.
- 2. Set the test pattern as high on the CRT display as possible.

5-7. VERTICAL CENTER

Description

Vertically centers the test pattern.

Procedure

1. With screwdriver turn A1R702 until the test pattern crosshair is vertically centered on the display.

5-8. VERTICAL HEIGHT

Description

This adjustment sets the vertical height of the display characters and CRT display.

Procedure

1. With the insulated screwdriver turn A 1R704 until available screen area is filled.

5-9. HORIZONTAL CENTERING (WIDTH)

Description

Adjusts the test pattern width.

Procedure

1. Use the plastic core adjuster to turn A1L5 until the width of the test pattern is centered on the display.

5-10. FOCUS

Description

Adjusts clarity of the characters on the display.

Procedure

1. With the insulated screwdriver adjust A1R503 until the characters on the display are sharply focused.

5-11. INTENSITY

Description

Adjusts the intensity of the characters on the display and makes the full bright and half bright enhancements distinct from one another.

Procedure

1. With an insulated screwdriver adjust A 1R 603 so that the brightness level provides a clear distinction between character types on the display.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

This section contains information for ordering replacement parts. Table 6-1 lists abbreviations used. Table 6-2 is a manufacturer's code list. Tables 6-3 through 6-6 list the mechanical parts and Table 6-7 lists the replaceable parts. Figures 6-1 through 6-4 are exploded views of the instrument.

6-2. REPLACEABLE PARTS LIST

Table 6-7 lists the replaceable parts in alphanumeric order. Information is given for the Description, Quantity (total used in the instrument), HP Part Number, and Manufacturer's Part Number. Chassis and mechanical parts are listed in Tables 6-3 through 6-6.

6-3. ORDERING INFORMATION

To order a listed part, quote the HP Part Number, indicate the quantity needed and send the order to the nearest Hewlett-Packard office. When ordering a part not listed, include the instrument model number, serial number, with a physical and functional description of the part. Send the order to the nearest Hewlett-Packard office.

Table 6-1. Reference Designations and Abbreviations

		REF	RI	ENCE DESIGNATIONS			
A	= assembly	J	=	electrical connector	тв	=	terminal board
8	= fan; motor			(stationary portion); jack	TP	=	test point
вт	= battery	L	=	coil; inductor	U	=	integrated circuit;
C	= capacitor	MP	=	misc. mechanical part			microcircuit
CR	= diode; diode thyristor;	Р	=	electrical connector	l v	=	electron tube; glow lamp
011	varactor			(movable portion); plug	VR	=	voltage regulator;
DL	= delay line	Ιa	=	transistor; SCR;			breakdown diode
DS	= annunciator; lamp; LED	-		triode thyristor	w	=	cable
E	= misc electrical part	R	=	resistor	×	=	socket
F	= fuse	RT	=	thermistor	Y	=	crystal unit (piezo-
, FL	= filter	S	=	switch; jumper			electric or quartzi
Н	= hardware	ΙŤ	==	transformer			·
	<u> </u>			BBREVIATIONS			
					1		
Α	= amperes	DIA		diameter	К	=	kilo (103), kilohm
AC	= alternating current	DIP		dual in-line package			Daha amining diada
ADD	= address	DPDT		double-pole, double-throw	LED	=	light emitting diode
ADJ	 adjust, adjustment 	DPST		double-pole, single-throw	LFT	=	left
AL	= aluminum	DR	=	drive	LG	=	long
AR	= as required	DRVR	=	driver	LH	=	lefthand
ASM	 algorithmic state machine 	DSPL	=	display	LKWR	=	lockwasher
ASSY	= assembly	DTL	=	diode-transistor logic	LP	=	low pass
					LS	=	low power Schottky
В	= base	E	==	emitter	LSB	=	least significant bit
BCD	= binary coded decimal	ECL	=	emitter-coupled logic			
BeCu	= beryllium copper	ELECT	=	electrolytic	М	=	milli (10-3), male,
BIN	= binary	ENCAP	=	encapsulated			mega (106), megohm
BLK	= black	EXT	=	external	MET FLN	/ 1=	metal film
BLU	= blue	EXTR	=	extractor	MET OX.	=	metal oxide
BP	= band pass				MHZ	=	megahertz
BRN	= brown	F	=	female, farads	MFR	=	manufacturer
BRS	= brass	FF	=	flip-flop	MINTR	=	miniature
BTU	= British thermal unit	FLM		film	MISC	=	miscellaneous
B 10	- British thermal dint	FRNT		front	мом	=	momentary
С	= collector	FXD		fixed	MOS		metal oxide semiconductor
CATH	= cathode	1 1 1 1		17,00	MSB		most significant bit
-	= counterclockwise	G	=	giga (10 ⁹)	MTCHD		. .
CCW CD PL		GE	=	germanium	MTG		mounting
	= cadmium plate	GL	=	glass	MTLC	=	metallic
CER	= ceramic	GND	=	ground(ed)			
CERMET		GP	=	•	N	=	nano (10-9)
CKTS	= circuits	l <u> </u>		General Purpose	N.C.		normally closed, no
C FLM	= carbon film	GRA	=	gray	IV.C.	_	connection
CLK	= clock	GRN	=	green	NC	_	
CLR	= clear			1 2 2 2	NE NO		neon
CMOS	= complementary metal	Н		henries	NO.	=	number
	oxide semiconductor logic	HDW		hardware	N.O.	=	normally open
COM	= common	HEX		hexagon, hexagonal, six	NP	=	
COML	= commercial	HP		high pass	NPN	=	negative-positive-negative
COMP	= composition	HR	=	hour(s)	NPO	=	negative-positive zero (zero
COMPL	= complete	HZ	=	Hertz			temperature coefficient
COND	= conductor				NRFR	=	not recommended for
CONN	= connector	1C	=	integrated circuit			field replacement
CONT	= contact	G!		inside diameter	NS	=	normally shorting,
CPRSN	= compression	IF	=	intermediate frequency			nanosecond
CTL	= complementary-	IN.	=	inch, inches	NSR	=	not separately replaceable
	transistor logic	INCAND	=	incandescent	NYL	=	nylon
cW	= clockwise	INCL	=	include(s)			
-		INSUL	=	insulation, insulated	OBD	=	order by description
D	= diameter	INT		internal	OD	=	outside diameter
		INTL		internal	ORN	=	orange
							-
DC DEPC	direct currentdeposited carbon	INTL	=	mernai	UNIN	_	orange

}}.

Table 6-1. Reference Designations and Abbreviations (Continued)

				-	ABBREVIATIONS			
Р	=	pico (10-1 2)	RVT	=	rivet	TRN	=	turn
PC	=	printed circuit	RWV	=	reverse working voltage	TTL	=	transistor-transistor logic
PCA	<u>:=</u>	printed-circuit assembly				TYP	=	typical
PF	=	picofarad	s	=	second			
PIV	=	Peak Inverse Voltage	SB	=	slow blow	(μ)	=	micro (10-6)
PK	=	peak	SCR	=	silicon controlled rectifier	UF	=	microfarad
PNL	Ξ	panel	SE	=	selenium	⊍S	=	microseconds
PNP	=	positive-negative-positive	SGL	=	single			
P-P	=	peak-to-peak	SI	=	siticon	V	=	volt(s)
PPM	=	parts per million	SHK	=	shank	VAR	=	variable
POLYC	=	polycarbonate	SIP	=	single in-line package	vco	=	voltage controlled
POLYE	=	polyethylene	SKT	=	socket			oscillator
POLYST	Y =	polystyrene	SLDR	=	solder	VDCW	=	direct current working voll
PORC	=	porcelain	SPCG	=	spacing	VIO	=	violet
POSN	=	position(s)	SPDT	=	single-pole, double-throw	VNP	=	no polarity voltage
POZI	=	pozidrive	SPST	=	single-pole, single-throw			
PRV	=	peak reverse voltage	SST	=	stainless-steel	w	=	watts
PWV	=	peak working voltage	STL	=	steei	WT		weight
P/0	=	part of	SZ	=	size	ww	=	wirewound
			1			WHT	=	white
R	=	ring	T	=	tip	WIP		wiper
RAM	=	random access memory	TA	=	tantalum	WIV		working inverse voltage
ROM	=	read only memory	TEL	=	telephone	WSHR	=	washer
RECT	=	rectifier	T.C.	=	Temp. Compensated,			
RF	=	radio frequency			temp. coefficient) X	=	times, multiple
RH	≠	right hand	THKNS	=	thickness			
RMS	=	root-mean-square	TI	=	titanium	YEL	=	yellow
RND	=	round	TGL	=	toggle			
RT	=	right hand	THD	=	thread	ZNR	=	zener
RTL	==	resistor-transistor logic	THK	==	thick			
RTNT	Ξ	retainer	TOL	=	tolerance	φ	=	phi, phase
RTRY	-	rotary	TRMR	=	trimmer			

Table 6-2. Manufacturer's Code List

MFR NO.	MANUFACTURER NAME	ADDRESS	ADDRESS			
S4013	HITACHI	TOKYO	JР			
00000	ANY SATISFACTORY SUPPLIER					
01121	ALLEN-BRADLEY CO	MILWAUKEE	WI	53204		
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS	TX	75222		
01456	MICROWAVE DEVELOPMENT LABS INC	NEEDHAM HTS	MA	02194		
03888	K D I PYROFILM CORP	WHIPPANY	LN	07981		
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX	AZ	85008		
06383	PANDUIT CORP	TINLEY PARK	IL	60477		
08806	GE CO MINIATURE LAMP PROD DEPT	CLEVELAND	ОН	44112		
18546	VARO SEMICONDUCTOR INC	GARLAND	TX	75040		
12969	UNITRODE CORP	WATERTOWN	MA	02172		
17856	SILICONIX INC	SANTA CLARA	CA	95054		
19209	GE CO ELEK CAP & BAT PROD DEPT	GAINSVILLE	FL	32601		
19701	MEPCO/ELECTRA CORP	MINERAL WELLS	TX	76067		
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD	PA	16701		
27014	NATIONAL SEMICONDUCTOR CORP	SANTA CLARA	CA	95051		
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO	CA	94304		
3L585	RCA CORP SOLID STATE DIV	SOMERVILLE	LИ			
32293	INTERSIL INC	CUPERTINO	CA	95014		
32997	BOURNS INC TRIMPOT PROD DIV	RIVERSIDE	CA	92507		
5L813	ASHLAND PRODUCTS CO	CHICAGO	IL	60628		
51642	CENTRE ENGINEERING INC	STATE COLLEGE	PA	16801		
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	MA	01247		
71590	CENTRALAB ELEK DIV GLOBE-UNION INC	MILWAUKEE	WI	50501		
72982	ERIE TECHNOLOGICAL PRODUCTS INC	ERIE	PA	16512		
75042	TRW INC PHILADELPHIA DIV	PHILADELPHIA	PA	19108		

Table 6-3, HP 4951A Case and Cover

Table 6-3. HP 4951A Case and Cover							
Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number	
MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8 MP9	04951-40005 5040-4480 4040-1704 4040-2171 5040-4470 04951-80014 2520-0014 0380-1693 0424-0458	393078252	1 1 1 1 1 2 4 4 4 4	4951A CASE AND COVER POUCH-SOFT CASE CASE-TOP HALF SHELL CASE BOTTOM 10 077-IN-WD INTERFACE POD HOUSING HANDLE-CASE LABEL HANDLE SCREW-MACH 8-32 4-IN-LG RD-HD-SLT STL STANDOFF SCR-TPG. 8-16	28480 28480 28480 28480 28480 28480 00000 28480 000000	04951-40005 5040-4480 4040-1704 4040-2171 5040-4470 04951-80014 ORDER BY DESCRIPTION 0380-1693 ORDER BY DESCRIPTION	
						`	

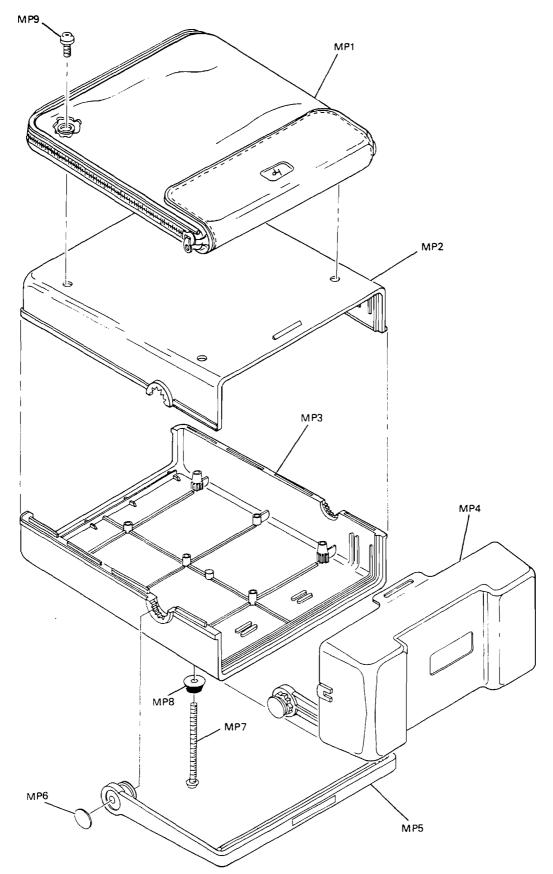


Figure 6-1. HP 4951A Case and Cover

()

HP 4951A Replaceable Parts

Table 6-4. HP 4951A Rear Panel Assembly

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
		Τ				
E1	9135-0224	7	,	LINE FILTER	28480	9135-0024
E2	3101-0428	5	1	SWITCH RKR BASIC DPDT 6A 250 BLDR-LUG	28480	3101-0428
MP1	5040-4471	8	2	REAR FOOT	28480	5040-4471
H1	1251-2942	7	2	LOCK BOLT, INC NUT, WASHER	28480	1251-2942
T1	9100-4366	2	1	PWR TRANSFORMER	28480	9100-4366
MP2	04951-00001	5	1	BACK PANEL	28480	04951-00001
W1	04951-61609	17	1	CABLE, GROUND	28480	04951-61609
H2	2260-0002	6	1	NUT-HEX-DBL-CHAM 4-40-THD 062-IN-THK	28480	2260-0002
W2	04951-61603	11	1	CABLE, MAIN REAR	28480	04951-61603
W3	04951-61604	2	1	CABLE-POD INTR	28480	04951-61604
Н4	2260-0002	6	1	NUT-HEX-DBL-CHAM 4-40-THD 062-IN-THK	28480	2260-0002
н3	2190-0019	6	1	WASHER-LK HLCL NO 4 115-IN-1D	28480	2190-0019
W4	04951-61610	0	1	CABLE, LINE FILTER	28480	04951-61610
E3	2110-0421	6	1	FUSE- 375A 250V	04480	MDO-3 8

Table 6-5. HP 4951A Internal Assemblies

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
		T				
				*********	05010	ORDER BY DESCRIPTION
H15	2360-0117	8	4	SCR MCH 6-32-375	05610	04951-61602
W6	04951-61602	8		CABLE, MAIN	28480	
н16	5041-2246	3	1	CONNECTOR	28480	5041-2246
H17	1252-0060	8	1	HEADER, 20 POS	28480	1252-0060
H18	1200-0607	0	1	CONNECTOR	28480	1200-0607
H19	04951-20007	1 1	4	SPACER, CASE	28480	04951-20007
H20	1251-8827	9	2	CONNECTOR-60 PIN	28480	1251-8827
H21	1251-3751	11	1	HEADER, 8 POS	03418	09-65-1081
H23	1251-3825	0	1	HEADER, 5 POS	03418	09-65-1051
	1251 0020	6	,	CONNECTOR-40 PIN	28480	1251-8828
H24 H25	1251-8828 0380-0388	1	4	STDF-HEX .375, 1 IN	28480	0380-0388

Table 6-6. HP 4951A Front Panel Assembly

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
		П				
E4	04951-62606	6	1	DEFLECTION YOKE	28480	04951-62606
н5	0460-0135	8	1	IND TAPE	04726	361
E5	2090-00B0	9	1	CRT	28480	2090-0080
W1	04951-61609	7	1	CABLE, GROUND	28480	04951-61609
Н6	0624-0400	9	4	SCR-TPG 6-19	04771	ORDER BY DESCRIPTION
н7	3050-0001	11	4	WASHER FLAT #8	04604	NO. 1445
н8	0624-0314	3	2	SCR-TPG 4-20	05610	224-08150-382
Н9	2360-0117	8	4	SCR MCH 6-32-375	05610	ORDER BY DESCRIPTION
MP3	04951-00002	4	1	BRACKET, TAPE TRANSPORT	28480	04951-00002
MP4	5061-2246	6	1	TAPE TRANSPORT OPT 001	28480	5061-2246
MP5	04951-00003	5	1	CRT PANEL	28480	04951-00003
MP6	04951-40001	7	1	FRONT PANEL	28480	04951-40001
MP7	04951-40003	9	1	KYBD HSG UPPER	28480	04951-40003
MP8	04951-62605	3	1	KEYBOARD ASSY	28480	04951-62605
MP9	04951-40004	0	1	KYBD HSG LOWER	28480	04951-40004
н10	0570-0025	8	1	SCR-MCH 6-32, 5IN	03380	933-415
H11	1460-1916	6	2	SPRING-CPRSN	05191	ORDER BY DESCRIPTION
H12	04951-20005	9	2	HINGE PIN	28480	04951-20005
MP10	04951-40002	8	1	TAPE COVER	28480	04951-40002
W5	04951-61607	3	1	CABLE, KEYBOARD	28480	04951-61607
w8	04951-61608	4	1	CRT CABLE	28480	04951-61608
W9	04951-62606	6	1	DEFLECTION YOKE	28480	04951-62606
H13	1460-1490	1	2	SPRING	05191	LC-042G-5-SS
MP11	04951-20004	8	1	HINGE PLATE	28480	04951-20004
H14	04951-20006	0	4	CRT SPACER	28480	04951-20006

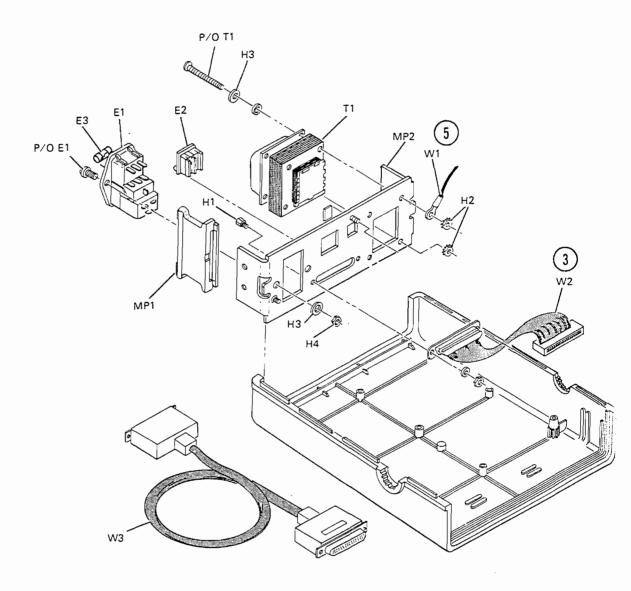


Figure 6-2. HP 4951A Rear Panel Assembly

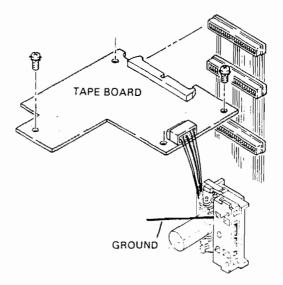

6. Connect the CRT Cables

Move the Front Panel and Keyboard to the front of the case bottom.

Connect the cables from the CRT to the Main Board.

Slide the front panel into the grooves on the front of the case.

Connect the PA cable; check that both prongs are securely inside the CRT.

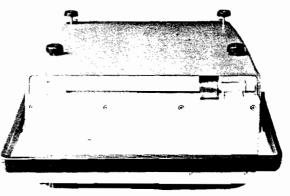

7. Option 001, the Tape Controller Board

Place the A3 Tape Controller Board, circuit side up on the 4 standoffs on the Memory Board.

Insert and tighten the four screws.

Attach the cable to A3J1. Press firmly into place.

Connect the cable from the Tape Transport to A3J2.


8. Close the Instrument

Place the handle in the bottom half of the case.

Slide the case top into place. All notches and grooves must be correctly seated.

Hold the top and bottom of the instrument together and turn it upside down.

Insert the screws and rubber feet and tighten.

3. Assemble Front Panel

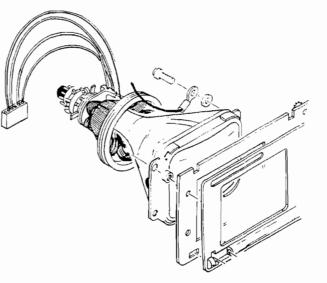
Insert the hinge springs and pins.

Set the hinges into the slots on the front panel.

Lock into place by wiggling the hinge plate and spring.

4. Mount CRT onto Front Panel

WARNING

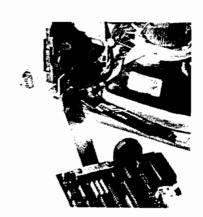

Wear safety glasses when handling the CRT.

Place assembled Front Panel with the keyboard side down on the bench.

Put the standoffs in place on the CRT. Seat each standoff with the flat side aligned with the cutout for the CRT in the front panel.

Set the CRT on the standoffs with the jack for the PA LEAD to transformer A1T300 facing the side of the case. Attach the ground strap.

Discharge the CRT to ground (see Disassembly, Step 5).

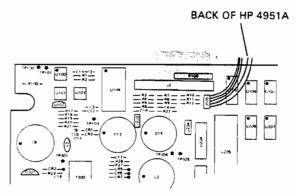


5. Connect the Cable and Mount the Memory Board

Place the Memory Board, circuit side up by the Keyboard cable. Insert the cable into A 1J2 on the Memory Board. Insert and tighten the screws.

Place the Memory Board, circuit side down on the standoffs. Fasten the Memory Board into place with the threaded standoffs.

Press the cable into A2J1.



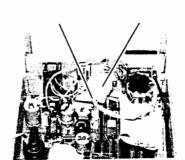
10. Disassemble the Back Panel

Disconnect the cables connected to A1J2 and A1J204.

Disconnect the ground cable attached to the transformer on the back panel.

Slide the Rear Panel up and out of the instrument.

8-9. ASSEMBLY PROCEDURES


Replace A1 Main Board and Back Panel

Seat the Main Board into the case bottom.

Place the Rear Panel against the back of the case bottom.

Connect the cables to A1J2 and A1J204.

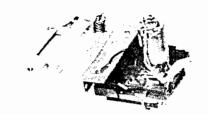
Slide the Rear Panel into place in the grooves on the back of the HP 4951A case bottom.

2. Assemble Keyboard Housing

3

Seat keyboard printed circuit board into keyboard case bottom. Fold the keyboard cable (W6) so that it lies flat against the circuit side of the printed circuit board.

There should be a protective strip attached to the keyboard side of the cable.

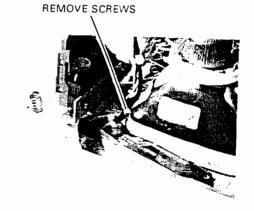


7. Remove the Keyboard and Front Panel

Hold the Keyboard in the closed position. Lift the Front Panel and Keyboard up and out of the case bottom.

Lay the Front Panel face side down on the workbench.

To remove Option OO1, remove the two screws holding the Tape Transport in place and lift it off of the Front Panel.

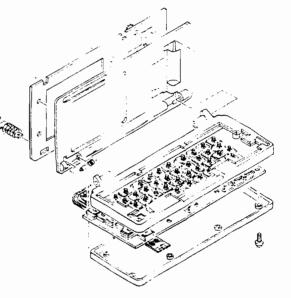

8. Remove the CRT

WARNING

Wear safety glasses when handling the CRT.

Disconnect the ground cable attached to the CRT.

Remove the four screws holding the CRT in place.

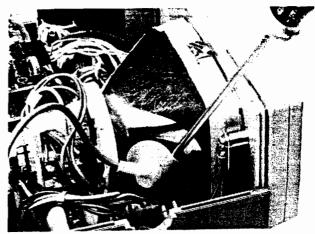


9. Disassemble the Front Panel and Keyboard

Remove the hinge plates. The CRT and Front ℓ Panels will seperate.

Remove the eight screws from the Keyboard case bottom.

Pull the Keyboard case apart. The Keyboard assembly and Keyboard cable will be exposed.



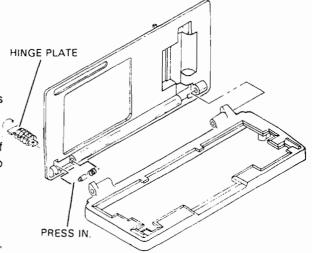
5. Disconnect the CRT cables

Discharge the CRT to ground. Slide a screwdriver under the PA cable cover. Touch the metal part of the screwdriver to the sheet metal part of the front panel which is ground.

Use the needlenose pliers to squeeze together the two leads in the PA cable and remove the prongs from the CRT.

Remove the cables connected to A1J801 and A1J700.

6. Remove the Keyboard Hinge Pins

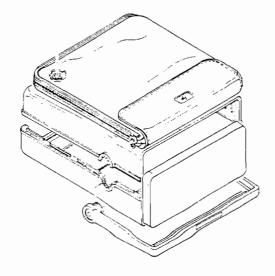

Open the Keyboard.

With one hand, use the needlenose pliers to press in and turn the hinge plate.

Hold the hinge plate in; press in the other end of the hinge plate with the 1/8" screwdriver to release the hinge pin.

Pull the hinge out of the slot on the Front Panel.

BE CAREFUL, catch the hinge pin with your hand, there is a spring behind it.

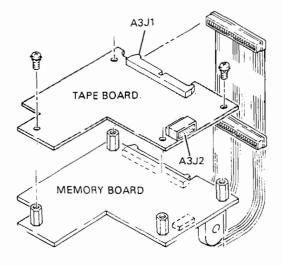


2. Remove the case top.

Hold the halves of the case together and turn the instrument right side up.

CAREFULLY pull the case top up and off.

Remove the handle.


3. Option 001, Tape I/O Board

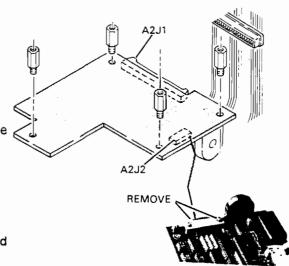
Disconnect A3J2, the cable between the Tape Board and the Tape Transport.

Remove the cable from A3J1.

Remove the four screws holding the Tape Board in place.

Lift the board off of the standoffs, place the component side up on the static protected work area.

10.1


4. Remove the Memory Board

Remove the four threaded standoffs holding the ϵ Memory Board in place.

Disconnect the cable at A2J1.

Fold out the Memory Board.

Remove the screws holding the cable to A2J2 and disconnect the cable.

8-7. DISASSEMBLY/ASSEMBLY PROCEDURES

CAUTION

Whenever internal circuits of the HP 4951A are accessed, procedures for handling static sensitive devices must be observed. For correct handling see paragraph 8-6.

Equipment Needed

#1 posidrive screwdriver #2 posidrive screwdriver 1/4" slotted screwdriver 1/8" slotted screwdriver needle nose pliers static safe work area

WARNING

8000 volts can be present even when the HP 4951A is turned off.

8-8. DISASSEMBLY PROCEDURES

1. Remove External Fastenings

Lay the instrument upside down on a flat, static protected surface.

Set the handle on the bench.

Remove the four screws which secure the feet and the case halves.

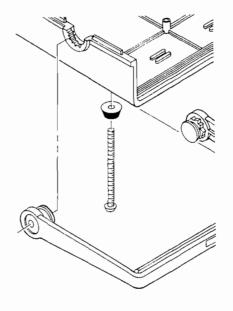


Table 8-1. Recommended Test Equipment for Troubleshooting

INSTRUMENT	CRITICAL SPECIFICATIONS	RECOMMENDED MODEL
Signature Multimeter	DC volts 250V Freq 10 MHz Resistance 10 Mohms	HP 5005A Compute Museum
Oscilloscope	> 20 MHz bandwidth	HP 1740A
Voltmeter	1000 VDC	HP 3466A
Function Generator	Sinewave, 50 KHz	HP 3310B

8-6. GENERAL HANDLING OF STATIC SENSITIVE DEVICES

The HP 4951A has many HCMOS components. Observe the following guidelines when handling static sensitive devices.

- 1. Wear a wrist strap which contacts the bare skin and is properly grounded.
- 2. All equipment, such as soldering irons, fixtures, storage containers, and shelving, and so on must be grounded.
- Work areas must be clear of non-conductive material. No plastics, polyurethane bags, coffee cups, candy wrappers, cigarette packs, or untreated trays should be near the work station.
- 4. Clothing should never come in contact with components or assemblies. Wear short sleeves, rolled up long sleves, or preferably an antistatic smock.
- 5. Use antistatic solution on all work benches, table mats, hand tools, storage containers, chair seat, and back rests.
- 6. Static sensitive devices must be protected at all times. Keep the devices in their antistatic packaging.
- 7. All work must be performed at a static safe work station. A static safe work station has the following:
 - a. Conductive tablemat connected to ground through 1 M resistor.
 - b. Wrist strap grounded through 1 M resistor.
 - c. All test equipment tied to one common ground.

Ţ

SECTION VIII SERVICE

8-1. INTRODUCTION

This section provides information to troubleshoot and repair the HP 4951A Protocol Analyzer. Information includes Disassembly/Assembly procedures, Theory of Operation, Troubleshooting procedures, Signature Analysis tables, Component Locators, and Schematics.

8-2. MAINTENANCE

The HP 4951A Protocol Analyzer does not require regular cleaning or maintenance. It is recommended that the complete Performance Verification tests are performed on a regular basis.

8-3. THEORY OF OPERATION

This manual does not contain a Theory of Operation.

8-4. TROUBLESHOOTING

This manual provides a two part method to isolate a problem to a particular assembly. The results of the Performance Verification tests isolate the problem to an area of the HP 4951A. Once the area is identified, complete the Signature Analysis routines to isolate the problem to a component.

8-5. RECOMMENDED TEST EQUIPMENT

Test equipment recommended to perform the troubleshooting procedures for the Protocol Analyzer is listed in Table 8-1. Equipment with equivalent characteristics may be used.

HP Computer Museum www.hpmuseum.net

For research and education purposes only.

HP 4951A Manual Changes

7-2

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

This section contains information to backdate this manual for instruments with serial prefix numbers lower than the Serial Prefix shown on the Title Page. It may also contain information about compatibility with other Protocol Analyzer software.

7-2 MANUAL CHANGES

To adapt this manual to your instrument, make changes listed in Table 7-1. Changes are listed by serial prefix number. The sequence of changes should be performed in the order shown.

For instruments with serial prefixes greater than the Serial Prefix shown on the Title Page, any changes are described in a yellow MANUAL CHANGES supplement.

Table 7-1. Manual Changes

Instrument	Make
Serial No.	Changes
NO CHAN TIME OF F	

HP 4951A Replaceable Parts

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A10U105 A10U106 A10U107 A10U204 A10U205	1820-3350 1820-3007 1820-2922 1820-3082 1820-3515	0 4 0 5 9	1 2 4 4	IC MUXR/DATA-SEL CMOS/74HC 4-TO-1-LINE IC GATE CMOS/74HC EXCL-OR QUAD 2-INP IC GATE CMOS/74HC NAND QUAD 2-INP IC-HC74HC374N IC Z0530ACS	20480 20480 20480 28480 28480	1828-3350 1820-3007 1820-2922 1820-3082 1820-3515
A10U206 A10U207 A10U208 A10U209 A10U304	1820-3299 1820-3097 1820-3191 1820-3436 1820-3082	5 2 7 3 5	1 3 4 1	IC CATE CHOS/74HC OR QUAD 2-INP IC GATE CHOS AND QUAD 2-INP IC HUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC-9-BIT HICROPROCESSOR; 4HHZ CLOCK IC-HC74HC374N	28480 28480 28480 28480 28480	1920-3278 1920-3097 1920-3191 1920-3436 1920-3482
A10U306 A10U307 A10U30B A10U404 A10U405	1820-3097 1820-3330 1820-2998 1820-3208 1820-3081	2 6 0 7 4	1 1 1 4	IC GATE CHOS AND QUAD 2-INP IC TRANSCEIVER CHOS/74HC BUS DCTL IC-HC74HC373N IC CNTR CHOS/74HC BIN ASYNCHRO IC FF CHOS/74HC D-TYPE POS-EDGE-TRIG	28480 28480 28480 28480 28480	1920-3097 1920-3330 1920-2998 1820-3208 1020-3081
A10U406 A10U407 A10U408 A10U409 A10U410	1820-3081 1818-3198 1820-3191 1820-3191 1820-3191	4 9 7 7 7	1	IC FF CHOS/74HC D-TYPE POS-EDGE-TRIG IC CHOS 65536(64K) STAT RAH 150-MS 3 S IC HUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC HUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC HUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE	28480 28480 28480 28480 28480	1820-3081 1818-3198 1820-3191 1820-3191 1820-3191
A1 0U503 A1 0U505 A1 0U506 A1 0U508 A10U509	1820-3373 1820-2921 1020-2923 1820-3297 1820-2853	7 9 1 4 6	1 3 1 1	IC NV CHOS/74HC MONOSTEL CLEAR DUAL IC INV CHOS HEX IC CATE CHOS/74HC NAND TPL 3-INP IC DRVR CHOS/74HC BUS OCTL IC-68A45	20 480 28 48 0 20 48 0 28 48 0 02037	1020-3373 1820-2921 1020-2923 1820-3297 MC68A45P
A1 00604 A1 00605 A1 00606 A1 00607 A1 00610	1826-0753 1820-2925 1820-2922 1018-1738 1820-2922	3 3 0 9	1 1	IC DP AMP LOW-BIAS-H-IMPD QUAD 14-DIP C IC CMTR CHOG/74HC BIN SYNCHRO IC CATE CHOS/74HC NAND QUAD 2-INP IC CMOS 16384 (16K) STAT RAM 200-NS 3-S IC GATE CHOS/74HC NAND QUAD 2-INP	84713 28480 20480 54013 28480	MC34004BL 1020-2725 1820-2722 HM6116LP-4 1020-2722
A10U701 A10U705 A10U707 A10U709 A10U709	1820-3082 04951-10010 04951-10011 1820-2921 1820-3082	57895	1	IC-HC74HC374N IC HEHORY IC HEHORY IC INV CHOS HEX IC-HC74HC374N	28480 28480 28480 28480 28480	1020-3002 04751-10010 04751-10011 1820-2721 1820-3082
A10U803 A10U804 A10U805 A10U806 A10U807	1820-2924 1820-2921 1820-3007 1820-1922 1820-3081	2 9 4 8 4	1	IC-NC74HC02N IC INV CMOS HEX IC GATE CHOS/74HC EXCL-OR QUAD 2-INP IC GIF-RCTR TIL LS PRL-IN SERIAL-OUT IC FF CMOS/74HC D-TYPE POS EDGE-TRIG	28480 28480 20480 01295 20480	1020-2724 1020-2721 1020-3007 SN74LS166N 1020-3081
A1 0U90 4 A1 0U90 5 A1 0U90 6 A1 0U90 7	1820-3081 1820-3196 1820-2922 1820-3097	4 2 0 2	1	IC FF CHOS/74HC D-TYPE POS-EDGE-TRIG IC GATE CMOS/74HC NOR DUAL 4-INP IC GATE CHBS/74HC NAND GUAD 2-INP IC GATE CHOS AND QUAD 2-INP	28480 20480 28480 28480	1820-3981 1820-3196 1920-2722 1820-3097
A10XJ105 A10XJ108 A10XJ203 A10XJ400 A10XJ402	1251-6857 1251-6857 1251-6857 1251-6857 1251-6057	1 1 1 1 1	15	CONNECTOR 2-PIN M POST TYPE	20480 28480 28480 28480 20480	1251-6657 1251-6857 1751-6857 1251-6857 1251-6057
A10XJ404 A10XJ405 A10XJ406 A10XJ504 A10XJ509	1251-6857 1251-6057 1251-6857 1251-6857 1251-6857	1 1 1 1		CONNECTOR 2-PIN M POST TYPE	28400 28480 28480 20480 20480	1251-6857 1251-6057 1251-6857 1251-6857 1251-6857
A10XJ510 A10XJ603 A10XJ703 A10XJ804 A10XJ809	1251-6857 1251-6857 1251-6857 1251-6857 1251-4670	1 1 1 1 2	1	CONNECTOR 2-PIN M POST TYPE CONNECTOR	28480 28480 28480 28480 28480	1251-6857 1251-6857 1251-6857 1251-68576 1251-4670
A10XU205 A10XU209 A10XU509 A10XU608 A10XU609	1200-0654 1200-0654 1200-0654 1200-0638 1200-0796	7 7 7 7 8	3 1 2	SOCKETHIC 40-CONT DIP DIP SLOR SOCKETHIC 40 CONT DIP DIP SLOR SOCKETHIC 40-CONT DIP DIP SLOR SOCKETHIC 14-CONT DIP DIP SLOP SOCKETHIC 14-CONT DIP DIP SLOP	28480 23480 28480 28480 23488	1200-0654 1200-0654 1200-0654 1200-0630 1200-0630
A10XU705 A10XU707 A10XU810	1200-0567 1200-0567 1200-0796	1 1 8	2	SOCKET-IC 20-CONT DIP DIP-SLDR SOCKET-IC 28-CONT DIP DIP SLDR SOCKET-IC 8-CONT DIP DIP-SLDR	28480 28480 28480	1208 0547 1200-0567 1200-0796
A10Y108 A10Y504 A10Y505	0410-1520 0410-0761 0410-1307	2 1 7	1 1 1	XTAL 8,064MHZ CRYSTOL-QUARTZ 4,915 MHZ HC-18/U-HLDP XTAL 3,684MHZ	28480 28480 28480	0410-1520 - 0410-0761 0410-1387
	0380-0566 2200-0105 2260-0009 4330-0145	9 4 3 7	4 2 2 10	STANDOFF-RVT-ON 1.5-IN-LC 6-32THD SCREW-MACH 4-40 .312-IN-LC PAN-HD-POZI NUT-HEX-W/LKUR 4-40-THD .094-IN-THK INSULATOR-BEAD GLASS	00000 00000 00000 23430	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 4330-0145

1

3

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A10R32 A10R33 A10R34 A10R35 A10R36 A10R38	0757-0442 8110-0179 0698-0085 0757-0145 0757-0460 0698-3442	9 7 6 9 1	2 1 1	RESISTOR 10K 1% 125W FTC=0+-100 WIRE, RESISTIVE- 362 OHM. FT (0.0833 FT- RESISTOR 2 61K 1% 125W FTC=0+-100 RESISTOR 750K 1% 25W FTC=0+-100 RESISTOR 619K 1% 125W FTC=0+-100 RESISTOR 237 1% 125W FTC=0+-100	24546 08696 03292 19701 24546 24546	C4-1 8-T0-1002-F CUPRON CT4-1-8-T0-2611-F MF52C1 4-T0-7503 F C4-1 8-T0-6192-F C4-1 8-T0-237R F
A10R39 A10R41 A10R42 A10R43 A10R44	0698-5217 0757-0465 0757-0465 0757-0442 0757-0442	06699	2	RESISTOR 28 7K 5% 125W FTC=0100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	03292 24546 24546 24546 24546	NA4 C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A1 DR45 A1 DR46 A1 DR47 A1 DR48 A1 DR49	0757-0465 0757-0458 0757-0465 0698-3430 0757-0199	6 7 6 5 3	2	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 21.5 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100	24546 24546 24546 03888 24546	C4 1/8-T0-1003-F C4-1/8-T0-5112-F C4-1/8-T0-1003-F PME55-1/0-T0-2185-F C4-1/8-T0-2152-F
A10R50 A10R51 A10R52 A10R54 A10R55	0757-0450 0757-0179 0757-0465 0757-0442 0757-0424	7 3 6 9 7	2	RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 21.5K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 03292	C4: 1/8-T0: 5112-F C4-1/8-T0: 2152: F C4-1/8-T0: 1003-F C4-1/8-T0-1002-F CT4:1/8-T0: 1101-F
A10R56 A10R57 A10R58 A10R59 A10R60	0698-0083 0686-1045 0698-3154 0757-0420 0698-3389	B 9 0 3 3	3 1 1	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100K 5% .5W CC TC=0+882 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 17.8 1% .5W F TC=0+-100	24546 01121 24546 24546 28480	C4-1/8-T0-1961-F SR1045 C4-1/8-T0-4221-F C4-1/8-T0-751-F 0698-3389
A10R61 A10R62 A10R63 A10R64 A10R65	0757-0797 0757-0401 0690-0384 0757-0442 0686-1015	7 0 9 9 3	1	RESISTOR 90.7 1% .5₩ F TC=0+-100 RESISTOR 100 1% .125W F TC≈0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC≈0+-100 RESISTOR 10K 1% .125W F TC≈0+529	28480 24546 24546 24546 01121	0757-0797 C4 1/8-T0-101-F C4-1/8-T0-2151 F C4-1/8-T0-1002-F E&1015
A10R66 A10R67 A10R68 A10R67 A10R70	0757-0401 0757-0465 0686-1045 0686-1045 0757-0280	0 6 9 7 3		RESISTOR 100 12 .125W F TC=0+-100 RESISTOR 100K 12 .125W F TC=0+-100 RESISTOR 100K 52 .5W CC TC=0+882 RESISTOR 100K 52 .5W CC TC=0+802 RESISTOR 1K 1% .125W F TC≃0+-100	24546 24546 01121 01121 24546	C4·1/8-T0-101-F C4-1/8-T0-1003-F EB1045 EB1045 C4-1/8-T0-1001-F
A10R71 A10R72 A19R73 A19R74 A10R75	0757-0280 0498-3161 0698-3161 0757-0401 0698-3158	3 9 9 0 4	2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-3832-F C4-1/8-T0-3832-F C4-1/8-T0-101-F C4-1/8-T0-2372-F
A10R76 A10R77 A10R79 A10R80 A10R105	0757-0280 0699-3430 0757-0465 0757-0145 1810-0280	35698	4	RESISTOR 1K 1% .125W F TC=0+-100 RESISTUR 21.5 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 100K 1% .25W F TC=0+-100 NETWORK-RES 10-SIP 10K OHM X 9	24546 03888 24546 19701 05524	C4: 1/8-T0-1001-F PME55: 1/8-T0: 21R5-F C4-1/8-T0: 1003-F MF52C1/4-T0-7503-F C5C10A01-103G
A10R209 A10R309 A10R404 A10R503 A10R603	1810-0368 1810-0277 1810-0496 2100-3908 2100-3966	3 3 0 9	1 1 1	NETWORK-RES 10-SIP 10K OHM X 5 NETWORK-RES 10-SIP2.2K 0HM X 9 NETWORK-RES 8-SIP10.0K 0HM X 4 RESISTOR-TRNR 1H 10% CC TOP ADJ 1-TRN RESISTOR-TRNR 200K 10% C TOP-ADJ 1 TRN	02483 01121 01121 28400 28480	750-61-R10K 21 UAZ22 2088103 21 00-3908 21 00-3966
A10R702 A10R703 A10R704	2100-3096 1810-0369 2100-3089	6 4 7	1	RESISTOR-TRMR 50K 10% C TOP-ADJ 17-TRN NETWORK-RES 10-SIP 100K OHM X 5 RESISTOR-TRMR 5K 10% C TOP-ADJ 17-TRN	32997 02483 32997	3292W-1-503 750-61-R100K 3292W-1-502
A10T300 A10T500	04951-80016 9100-0453	0 0	1 1	100KHZ TRANSFORMER XFMR-FLYBACK	28480 28480	04951-80016 9100-0453
A10TP100 A10TP101 A10TP103 A10TP301 A10TP304	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360	5 5 5 5	18	CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SO CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SO CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SO CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SO CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SO	28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A10TP402 A10TP403 A10TP404 A10TP405 A10TP406	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360	5 5 5 5		CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SO	28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A10TP510 A10TP604 A10TP704 A10TP803 A10TP804 A10GND	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360 1251-8360	5 5 5 5 5 5		CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SO CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SO	28480 28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A10U100 A10U101 A10U102 A10U103 A10U104	1826-0412 1826-0544 1826-0275 1826-0468 1826-1066	1 0 4 7 3	1 1 1 1	IC COMPARATOR PRCN DUAL 8-DIP-P PKG V REF 8-DIP-C IC 7BL12A V RGLTR TO-92 IC COMPARATOR GP 8-DIP-P PKG IC COMPARATOR GP 8-DIP-P PKG IC-VOLTAGE REGULATOR 2A PIN PLASTIC PKG	27014 04713 04713 04713 04713 28480	LM393N MC1403U MC78L12ACP MC3423P1 1826-1066

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A10CR21 A10CR22 A10CR100	1901-0040 1901-0518 1884-0293	1 9 8	1	DIODE-SWITCHING JOV 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY THYRISTOR-SCR	28480 28480 04713	1901-0040 1901-0518 MCR69-2
A10DS1	2140-0013	5	1	LAMP-GLOW SAB-A 70/57VDC 300UA T-2-BULB	00806	5AD: A(NE-23A)
A10J1 A10J2 A10J185 A10J108 A18J203	1251-8827 1251-8828 1258-0141 1258-0141 1258-0141	9 0 8 8	1 1 16	60 POBITION CONN 40 POSITION CONN JUMPER-REM JUMPER-REM JUMPER-REM	28400 28480 28480 28480 28480 20400	1251-8827 1251-8828 1258-0141 1258-0141 1258-0141
A10J204 A10J400 A10J402 A10J404 A10J405	1251-4246 1258-0141 1258-0141 1258-0141 1258-0141	8 8 8 8	1	CONNECTOR 3-PIN M POST TYPE Jumper-Rem Jumper-Rem Jumper-Rem Jumper-Rem Jumper-Rem	28 480 28480 28480 28480 28480	1051-4246 1258-0141 1250-0141 1259-0141 1058-0141
A10J406 A10J504 A10J509 A10J510 A10J603	1258-0141 1258-0141 1259-0141 1258-0141 1258-0141	8 8 8 8 8		JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1258-0141 1250-0141 1258-0141 1258-0141 1258-0141
A10J608 A10J609 A10J700 A10J703 A10J801	1251-4292 1251-4398 1251-3825 1258-0141 1251-3751	4 1 7 8 8	1 2	SHUNT-DIP 7 POSITIONS CONNECTOR SHUNT-4 POSITION CONNECTOR 5-PIN M POST TYPE JUMPER-REM CONNECTOR 8-PIN M POST TYPE	28480 28480 28480 28480 28480	1251-4292 1251-4398 1251-3825 1258-0141 1251-3751
A10J804 A10J809 A10J810	1258-0217 1258-0141 1251-4398	9 8 1	1	MULTI-B-JUMP JUMPER-REM CONNECTOR GHUNT-4 POSITION	28488 28480 29480	1258-0217 1258-0141 1251-4378
A1L1 A1L2 A1L3 A1L4 A1L5	04951-80017 9140-0801 04951-80015 9140-0319 9140-0407	f 6 9 1 8	1 1 1 3	INDUCTOR 2MH10% TOROIDAL CHOKE COUPLED INDUCTOR COIL-LINEARITY CL-V 10UH MIN	28480 28480 28480 28480 28480	04951-80017 9140-0801 04951 80015 9140-0319 9140-0407
A10Q301 A10Q302 A10Q400 A10Q402 A10Q403	1854-0215 1855-0526 1855-0525 1855-0402 1855-0492	1 9 8 0 8	1 10 1 2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR MOSFET P-CHAN E MODE SI TRANSISTOR MOSFET N-CHAN E-MODE SI TRANSISTOR J-FET 205115 P-CHAN D-MODE TRANSISTOR J-FET 205115 P-CHAN D-MODE TRANSISTOR MOSFET N-CHAN E-MODE TO-220	04713 28480 28480 17856 28480	2N3904 1895-0526 11705-0529 2N5115 1005-0492
A10Q404 A10Q405 A10Q601 A10Q602 A10Q603	1055-0492 1026-0276 1655-0524 1855-0524 1055-0525	8 5 7 7	1 2	TRANSISTOR MOSFET N-CHAN E-MODE TO 220 IC 78LOSA V RGLTR TO-92 TRANSISTOR MOSFET N-CHAN E-MODE TO-220 TRANSISTOR MOSFET N-CHAN E-MODE TO-220 TRANSISTOR MOSFET N-CHAN E-MODE OF	29480 04713 28480 20480 20480	1855-0472 HC70L 05ACP 1955-0524 1955-0524 1955-0525
A100703 A100704 A100801 A100803 A100804	1854-0659 1853-0436 1853-0536 1854-0730 1826-0285	76756	1 1 1 2 1	TRANSISTOR NPN SI PD=12.5W FT=50MHZ TRANSISTOR PNP SI PD=11.5W FT=50MHZ TRANSISTOR PNP SI TO 92 PD=350MW TRANSISTOR NPN SI TO: 92 IC V RCLTR TO: 92	04713 04713 28480 04713 04713	MJE100 HJE170 1003-0536 HP56531 HC79L05C
A100903	1854-0730	5		TRANSISTOR NPN SI TO 92	04713	MPS6531
A1 0R1 A1 0R2 A1 0R3 A1 0R4 A1 0R5	0757-0288 3698-3266 0757-0438 0698-3446 0698-7929	1 5 3 3 5	1 2 1 1	RCSIGTOR 9.09K 1% .125W TC=0+-100 RESIGTOR 237K 1% .125W F TC+0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 9.09K .1% .125W F TC=0+-50	19701 24546 24546 24546 24546 19701	ME401/8-T0-9091-F C4-1/8-T0-2373-F C4-1/8-T0-5111-F C4-1/8-T0-383R-F ME401/8-T2-9091-B
A1 0R6 A1 BR7 A1 0R0 A1 0R9 A1 0R1 0	0757-0416 0757-0401 0698-8463 0799-0589 0698-3447	7 0 4 1 4	1 4 1 1	RESISTOR 5.11 1% .125W F TC=0+ 100 RESISTOR 100 1% .125W F TC=0++100 RCSISTOR 404.2 .1% .125W F TC=0++25 RESISTOR 34.334K .1% .125W F TC=0+-25 RESISTOR 422 1% .125W F TC=0+-100	24546 24546 28480 28488 24546	C4 1/8-T9-5118-F C4-1/8-T0-161-F 9678 3463 0679-0539 C4-1/0-T0-422R-F
A10R11 A10R12 A10R13 A10R14 A10R15	0757-0442 0757-0465 0698-0084 0757-0442 0698-8827	9 4	11 9 3	RESISTOR 10K 1% ,125W F TO:00+-100 RESISTOR 100K 1% ,125W F TO:00+-100 RESISTOR 2.15K 1% ,125W F TO:04+-100 RESISTOR 10K 1% ,125W F TO:04+-100 RESISTOR 10K 1% ,125W F TO:01+-100 RESISTOR 1M 1% ,125W F TO:01+-100	24546 24546 24546 24546 23480	C4 1/8-T0-1802-F C4 1/8-T0-1003-F C4-1/8-T0-2151-F C4-1/8-73-1802-F 8450-8027
A10R16 A10R17 A10R18 A10R19 A10R20	0690-3266 0698-3441 0757-0442 0757-0444 0698-3159	5 8 9 1 5	1	RESISTOR 237K 1% .125W F IC=0+-100 RESISTOR 215 1% .125W F IC=0+-100 RESISTOR 10K 1% .125W F IC=0+ 100 RESISTOR 12 IK 1% .125W F IC-0- 100 RESISTOR 26 IK 1% 125W FIC-0- 100	24546 24546 24546 02995 02995	C4 1/8-T0-2373-F C4-1/8-T0-215R-F C4-1/3-T0-1002-F 5033R 5033R
A10R21 A10R22 A10R23 A10R24 A10R25	0757-0466 0698-0034 6757-0317 0757-0442 6757-0346	7 9 7 9 2	1 2	RESISTOR 110K 1% 125W FTC-0100 RCSISTOR 2.15K 1% .125W F TC=0+-100 RCSISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	02995 24546 24546 24546 24546	5033R C4 1/8-T0-2151:F C1 1/8-T0 1231:F C4:1/8-T0:1002:F C4:1/8-T0:1000-F
A10R26 A10R27 A10R20 A10R29 A10R31	0678 -3153 0757 -0438 0757 -0346 0757 -0465 0757 -0200	9 3 2 6 3	t 5 (RESISTOR 3.83K 1% .(25M F TC=0+-100 RESISTOR 5.11K 1% .(25M F TC=0+-100 RESISTOR 10 1% .(25M F TC=0+-100 RESISTOR 100K 1% .(125M F TC=0+-100 RESISTOR 1K 1% .(125M F TC=0+-100	24546 24546 24546 24546 24546	C4 1/8 T0-3831/F C4 1/8-T0-5111 F C4 1/8-T3-1980/F C4-1/8-T0-1003/F C4-1/8-T0-1001 F

Table 6-3. Replaceable Parts

Table 6-3. Replaceable Parts						
Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A10	04951-60010	2	1	OPTION 003 KATAKANA BOARD	28480	04751-60010
A10C1 A10C2 A10C3 A10C4 A10C5	0160-0576 0160-3508 0160-4822 0160-4832 0160-4789	50°N40	12 4 2 1 6	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +00-20% 50VDC CER CAPACITOR-FXD 1000PF + 5% 100VDC CER CAPACITOR-FXD .01UF + 10% 100VDC CER CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30	29480 28480 20480 29480 29480	0160-0576 0160-3508 0160-4822 0160-4832 0160-4789
A10C6 A10C7 A10C8 A10C9 A10C7	0160-4789 0180-2683 0180-3374 0160-3879 0180-2683	0 3 9 7 1	1 1 5 1	CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 4.7UF+-10% 33VDC TA CAPACITOR-FXD 4700UF+30·10% 35VDC AC CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 47UF10% 35VDC TA	20480 54289 28480 28480 03923	0160-4789 DS16474 0180-3374 0160-3879 DS10474
A10C11 A10C12 A10C13 A10C14 A10C15	0160-3508 0160-4822 0180-3376 0160-4824 0180-3375	9 2 1 4 0	2 1 1	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 2200UF+30-10% 25VDC AL CAPACITOR-FXD 680PF +-5% 100VDC CER CAPACITOR-FXD 3300UF+30-10% 16VDC AL	28480 28480 28480 28480 28480 28400	0160-3508 0160-4022 0180-3376 0160-4024 0100-3375
A10C16 A10C17 A10C19 A10C20 A10C21	0160-3598 0160-0576 0160-2055 0160-3079 0180-3376	9 5 9 7		CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 01UF 100VDC CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 2200UF+30-10% 25VDC AL	28480 20480 04200 28480 28480	0169-3508 0160-0576 C023F:01F103ZS22-CDA 0160-3877 0100-3376
A10C22 A10C23 A10C24 A10C25 A10C26	0160-0576 0160-0576 0160-0576 0160-3508 0160-0796	ยอยอย	1	CAPACITOR-FXD .1UF +-26% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 2KVDC CER	28480 29480 28480 28480 72782	0160-0576 0160-0576 0160-0576 0160-3508 888-012-Z5U0 103h
A10C27 A10C28 A10C27 A10C30 A10C31	0160-4663 0160-0576 0160-4753 0160-0376 0160-4663	7 5 8 5 9	1 2	CAPACITOR-FXD 2 2UF -80-20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .027UF +-5% 50VDC CER CAPACITOR-FXD .1UF + 20% 50VDC CER CAPACITOR-FXD 2.2UF +80-20% 100VDC CER	28480 20490 20480 20480 28480 28480	0160-4663 0160-0576 0160-4753 0160-0576 0160-4663
A10C32 A10C33 A10C34 A10C35 A10C36	0180+3377 0160-4789 0160-4789 0160-3071 0170-0040	2 0 0 1 9	1 1 1	CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR FXD 10UF +-10% 100VDC CAPACITOR FXD .047UF +-10% 200VDC PULYE	28480 28400 28480 01456 56289	0180-3377 0160-4789 0160-4789 17UN-06K 272P47392
A18C37 A10C38 A10C37 A10C40 A18C41	0160-4579 0160-0576 0160-0576 0160-0576 0160-0576	65555	1	CAPACITOR-FXD .1UF +-5% 160VDC MET-PDLYC CAPACITOR-FXD .1UF +-20% 50VDC CEP CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-4579 0160-0576 0160-0576 0160-0576 0160-0576
A19C42 A10C43 A10C44 A10C45 A10C46	0160-4230 0160-4663 0160-4808 0160-4804 0160-3879	69407	3 1 2	CAPACITOR-FXD .01UF +86-20% 1KVDC CER CAPACITOR-FXD 2.2UF +80-20% 100VDC CER CAPACITOR-FXD 470PF +-5% 100VDC CER CAPACITOR-FXD 5/PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +-20% 100VDC CER	71590 28400 28480 28480 28480	GAC-103 0160-4663 0160-4808 0160-4804 0160-3879
A10C47 A10C48 A10C49 A10C50 A10C51	0160-0576 0160-4230 0160-4230 0160-4804 0160-4370	56665	1	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .01UF +80-20% 1KVDC CER CAPACITOR FXD .01UF +80-20% 1KVDC CER CAPACITOR-FXD 50FF +-5% 100VDC CER 04-30 CAPACITOR-FXD 1000PF +5% 200VDC CER	28480 71590 71590 28480 51642	0160-0376 GAP-103 GAP-103 G160-4804 200-200-NP0-132J
A1 0052 A1 0053 A1 0054	0160-4801 0160-4787 0160-4789	7 0 0	1	CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30	28490 28480 20400	0140-4801 0140-4709 0140-4789
A10CR1 A10CR2 A10CR3 A10CR4 A10CR5	1701-0704 1701-0704 1701-0850 1701-0850 1701-0871	4 4 3 3 6	2 3 4	DIODE PWR RECT 1N4002 100V 1A DO-41 DIODE-PWR RECT 1N4002 100V 1A DO-41 DIODE-EWITCHING 30V 200MA 2NS DO-35 DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PWR RECT 150V 2.5A 25NS	81275 01275 28480 28400 12967	1N4002 1N4002 1701 3050 1901-0050 UES1103
A10CR6 A10CR7 A10CR8 A10CR9 A10CR10	1901-0871 1901-0871 1901-0871 1901-0871 1901-0992	66622	2	DIODE-PWR RECT 150V 2.5A 25NS DIODE-PWR RECT 150V 2.5A 25NS DIODE-PWR RECT 150V 2.5A 25NS DIODE-SCHOTTKY 1N5822 43V 3A DIODE SCHOTTKY 1N5822 43V 3A	12969 12969 12969 28480 28480	UES1103 UES1103 UES1103 1731-0792 1701 0992
A10CR11 A10CR12 A10CR13 A10CR14 A18CR15	1901-0845 1901-1105 1902-3323 1901-1105 1901-0040	1 1 1 1	1 2 1 3	DIODE HU RECT 2KV SOMA 258NS DIODE-HU RECTIFIER DIODE-KR 42.2V 5% DO-35 PD+.4W TC+:.00% DIODE-HU RECTIFIER DIODE SWITCHING 30V 50MA 2NS DD-35	18546 28480 29480 28480 28480	VG-2× 1901-1105 1902-3323 1901-1105 1931-0040
A10CR1p A10CR17 A10CR18 A10CR19 A10CR20	1901-0692 1901-0040 1901-0050 1901-0518 1902-0949	9 1 3 8 1	1 2 1	DIODE-PWR RECT 200V 3A 200N3 DIODE-SWITCHING 30V 50MA 2NG DD-35 DIODE-SWITCHING 80V 200MA 2NG DD-35 DIODE-SH 6IG SCHOTTKY DIODE-ZNR 4.3V 5Z DD-35 PD4W TC=+.017%	0.4713 28480 28400 28480 28480	MRC52 1701-0040 1701-0050 1701-0518 1702-0749

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A3R26 A3R27 A3R28 A3R29 A3R30	0698-3260 0757-3435 0757-0317 0698-6360 0757-0442	9 6 7 6 9	2 † 1	RESISTOR 464 1% 125W F TC=O+-100 RESISTOR 38 3K 1% 125W F TC=O+-100 RESISTOR 1 33K 2W PW TC=O+-25 RESISTOR 10K 1% 125W F TC=O+-25 RESISTOR 10K 1% 125W F TC=O+-25 RESISTOR 10K 1% 125W F TC=O+-100	24546 24546 28480 28480 24546	C4-1-8-TO-4641-F C4-1-8-TO-3831-F O698-6360 C4-1-8-TO-CMF-55-1, T1
A3R31 A3R32 A3R32 A3R33 A3R34	0698-6360 0698-6360 0757-0199 0757-0442 0698-3444	6 3 9 1	1	RESISTOR 10K 1% .125W F TC=0+-25 RESISTOR 10K .1% 125W F TC=0+-25 RESISTOR 21.5K 1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	28480 28480 24546 24546 05524	0698-6360 0698-6360 C4-1. 8-TO-2152-F C4-1. 8-TO-1002-F C4-1. 8-TO-CMF-55-1. T1
A3R35 A3R36 A3R37 A3R38 A3R38 A3R39	0698-6360 0757-0280 0757-0482 0698-0084 0757-0274	6 3 7 9 5	2	RESISTOR 10K 1% .125W FTC=0+-100 RESISTOR 1K 1% .125W FTC=0+-100 RESISTOR 511K 1% .125W FTC=0+-100 RESISTOR 2.15K 1% .125W FTC=0+-100 RESISTOR 1.21K 1% .125W FTC=0+-100	28480 02273 02273 03292 03294	0698-6360 5033R CEA-993 CT4-1 8-TO-2151-F CT4-1: 8-TO-1211-F
A3R40 A3R41 A3R43 A3R44 A3R45	0698-3435 0757-0442 0757-0442 0757-0280 0698-3449	6 9 9 6		RESISTOR 38.3 1% .125W F TC=0+~100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 10K RESISTOR 1K 1% 125W RESISTOR 28.7K 1% 125W	03294 24546 02273 02273 03292	LO40 C4-1 8-TO-1002-F CEC-993 SO33R CT4-1-8-TO-2872-F
A3R46 A3R47 A3R2O7 A3R3O0 A3R3O7	0698-3452 0698-3451 1810-0280 1810-0368 1810-0280	0 8 3 8	3 2	RESISTOR 147K RESISTOR 133K 1% 125W NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 6-SIP 10.0K OHM X 5 NETWORK-RES 10-SIP 10.0K OHM X 9	03292 03292 01121 01121 01121	CT4-1 8-TO-1472-F CT4-1-8-TO-1331-F 210A103 206A103 210A103
A3R308 A3R404 A3R505 A3R506	1010-0280 0698-6360 1810-0368 1810-0374	8 6 3 1	1	NCTWORK-RES 10-SIP10.0K OHM X 7 RESISTOR 10K .1% .125W F TC=0+-25 NETWORK-RES 6-SIP10.0K OHM X 5 NETWORK-RES 8-SIP1.0K OHM X 4	01121 28486 01121 01121	210A103 0670~6360 206A103 208B102
A3U102 A3U103 A3U104 A3U105 A3U106	04951-10008 04951-10007 1020-3552 1020-3058 1020-2970	34 58	1 1 1 3 1	ST MACH PROM 401 TAPE PROM 404 MSCB10AN-1-TEMP IC FF CNOS/ZANC D-M/S POS-EDGE-TRIG COM MICROPROCESSOR	28480 28480 28480 28400 28400	04951-10008 04951-10007 1920-3552 1920-3050 1320-2970
A3U201 A3U205 A3U208 A3U300 A3U301	1820-2923 1820-3058 1820-3082 1820-3082 1820-3082	1 ១ ១ ១ ១	1	IC GATE CHOS/74HC NAND TPL 3-INP IC FF CHOS/74HC D H/S POS-EDGE-TRIG COM IC-HC74HC374N IC-HC74HC374N IC-HC74HC374N	20400 20400 20400 20400 20400	1820-2923 1820-3058 1820-3082 1820-3082 1820-3082
A3U302 A3U303 A3U305 A3U306 A3U307	04751-10009 1820-2232 1820-3058 1820-3185 1820-2722	45590	1 1 1	ST MACH PROM 402 IC RGTR CHOS 8-BIT IC FT CHOS/74HC D-H/S POS-CDGE-TRIG COM IC SCHMITT-TRIG CHOS/74HC INV HEX IC GATC CHOS/74HC NAND QUAD 2-INP	28480 04713 28480 28400 28400	04951-10009 MC14834FCP 1920-3058 1920-3185 1920-2922
A3U308 A3U404 A3U406 A3U407 A3U408	1 820 - 3330 1826 - 0740 1826 - 0521 1820 - 3081 1820 - 3081	6 3 4 4	1 1 1 2	IC TRANSCEIVER CMOS/74HC PUS OCTL IC SWITCH ANLG DUAL 16-DIP-C PKG IC OP AMP LOW-BIAS-H-IMPD DUAL B-DIP-P IC FF CMOS/74HC D TYPE POS-EDGE TRIG IC FF CMOS/74HC D-TYPE POS-EDGE-TRIG	28480 32273 81295 28480 28480	1020-3330 1:5043CDE TL072CP 1020-3081 1020-3081
A3U504 A3U505 A3U506 A3U507 A3U500	1820-3377 1826-1839 1826-0138 1828-1314 1828-1314	1 0 2 2	1 1 1 2	IC DRVR CHOS PRPHE HI-CUR GATED QUAD IC V ROLTR-SMG 1/1/40V 16-CHIP PKG IC COMPARATUR GP QUAD 14-DIP-P PKC IC MULTIPLKR 4-CHAN-ANNED DUAL 16-DIP-P IC MULTIPLKR 4-CHAN-ANNED DUAL 16-DIP-P	28480 20480 91275 3L985 3L985	1920-3377 1826-1039 LH339N CD4052BE CD4052BE
A3U607	1826-0753	3	1	IC BP AMP LOW-MIAS-H-IMPD QUAD 14-DIP-C	04713	MC34004BL
A3XU102 A3XU103 A3XU104 A3XU106 A3XU302 A3XU303 A3XU305	1209-0541 1200-0541 1200-0654 1200-0654 1200-0541 1200-0607	1 1 7 7 1	3 2	SOCKET - IC 24-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP SLDR SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 24-CONT DIP DIP SLDR SOCKET-IC 24-CONT DIP DIP SLDR IC SOCKET	28480 28480 28480 28400 28480 28480 28480	1200-0541 1200-0541 1200-0654 1200-0654 1230-0541 1200-0541
A3Y107	0410-0726	в	ı	CRYSTAL-QUARTZ 6.00000 MHZ	28486	0418 0726
	0624-0335 2008-0105 2260-0007 4330-0145	9 4 3 9	4 4 2 2	SCREW-TPG 4-20 .375-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .312-IN-LG PAN-HD-POZI NUT-HEX-W/LKWR 4-40-THD .094-IN-THK INSULATOR-BEAD GLASS	28480 90000 00900 28480	0424-0336 ORDER BY DESCRIPTION ORDER BY DESCRIPTION 4330-0145
	4951A \$001 0380-0398 1460-1602 2200-0105 2360-0117	3 3 7 4 6	4 1 2	OPTION 001 HICCELLANEOUS STANDOFF-HEX .375-IN-LG 6 32THD SPRING-TRON .103-IN-OD MUW ZN SCREW-MACH 4-40 .312-IN-LC PAN-HD-PDZI SCREW MACH 6-32 .375-IN LG PAN-HD POZI	28480 28480 28480 00000	4951A #001 0380:0380 1460-1602 OFDER BY DESCRIPTION CRDER BY DESCRIPTION
	5041-1523 5061-2246 04951-00002 04951-40002 04951-40006		1 1 1 1	EJECT BUTTON TAPE TRANSPORT ERACKET-TP TRANS TAPE COVER TAPE DOOR	28480 28480 28480 28480 28480	5041-1503 5061-2246 64951-00002 04951-40002 04951-40006

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A3	04951-60003	3	1	OPTION 001 TAPE CONTROLLER MOARD	28480	04251-60003
A3C1 A3C2 A3C3 A3C4 A3C5	0160-3508 0160-4789 0160-4789 0160-3508 0160-3508	9 0 0 9 9	7 2	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 15PF 10° 200VDC CER CAPACITOR-FXD 15PF 10° 200VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER	28480 04200 04200 28480 28480	0160-3508 292CCGG150J1008 292CCGG150J1008 0160-3508 0160-3508
A3C6 A3C7 A3C8 A3C9 A3C10	0160-4833 0160-3449 0160-4567 0160-3508 0160-4567	57292	1 1 3	CAPACITOR-FXD .022UF +-10% 100VDC CER CAPACITOR-FXD 2000PF +-10% 250VDC CER CAPACITOR-FXD 3900PF +-1% 100VDC CER CAPACITOR-FXD 1UF +80~20% 50VDC CER CAPACITOR-FXD 3900PF +-1% 100VDC CER	28480 28480 28480 28480 28488	0160-4033 0160-3449 0160-4567 0160-3558 0160-4567
A3C11 A3C12 A3C13 A3C15 A3C16	0160-4567 0160-0576 0160-3878 0160-3448 0180-2683	35005	4 2 1	CAPACITOR-FXD 3000FF +-1% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1000FF5% 100VDC CER CAPACITOR FXD 1000FF +-10% 1KVDC CER CAPACITOR-FXD 4.7UF+-20% 35VDC TA	28480 28480 02813 28480 28480	0160-4567 0160-0576 CW20A102M3 0160-3448 0180-2683
A3C17 A3C18 A3C19 A3C20 A3C21	0160-0576 0160-0576 0160-3508 0160-3508 0160-5657	55993	1	CAPACITOR-FXD .1UF + 20% 50VDC CER CAPACITOR-FXD .1UF + 20% 50VDC CER CAPACITOR-FXD 1UF +80 20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1200PF + 1% 100VDC CER	28480 28480 28480 28480 28480	0160-0576 0160-0576 0160-3500 0160-3500 0160-5657
A3C22 A3C23 A3C24 A3C25 A3C26	0160-3500 0160-4801 0160-0576 0160-4824 0160-4804	97540	1	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 680 -5% 100VDC CER CAPACITOR-FXD 470PF5% 100VDC CER	28400 23460 20400 02798 28480	0140 3500 0166-4801 0140 0576 CAC03C0G681J100A 0160-4808
A3C27 A3C28 A3C29 A3CR1 A3CR2	0160-0576 0160-4808 0160-4808 1901-0040 1901-0040	5 4 4 1	1 1 2	CAPACITOR-FXD 1UF5% 50VDC CER CAPACITOR-FXD 470PF5% 100VDC CER CAPACITOR-FXD 470PF5% 100VDC CER DIODC-SWITCHING 30V 50MA 2NS DD-35 DIODC-SWITCHING 30V 50MA 2NS DD-35	02010 28480 28480 28480 28480	SR205C104MAA 0160-4808 0160-4808 1701-0040
A3E105 A3E208 A3E304	1251-4670 1251-4670 3101-2063	3 2 B	2	CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE SWITCH-RKR DIP-RKR-ASSY 4-1A .05A 30VDC	28486 28486 28480	1251-4670 1251-4670 3101-2063
A3J1 A3J2 A3J105 A3J208	1251-8822 1252-0060 1258-0141 1258-0141	4 8 8 8	1 1 2	60 POS CONNECTOR CONN 20 PIN REMOVABLE JUMPER REMOVABLE JUMPER	28480 28480 28480 28480	1251-8822 1252-0060 1258-0141 1258-0141
A3L1 A3L2	9140-0807 9140-0807	2	5	CHOKE TOROIDAL CHOKE TOROIDAL	20480 28480	7140 0807 9140-0807
A3Q504 A3Q505 A3Q508 A3Q604 A3Q605	1855-0461 1855-0461 1856-0285 1855-0509 1855-0509	1 1 6 8	2 1 2	TRANSISTOR MOSFET N-CHAN TRANSISTOR MOSFET N-CHAN IC V RGLTR TO 92 TRANSISTOR MOSFET P-CHAN E-MODE TO 220 TRANSISTOR MOSFET P-CHAN E-MODE TO 220	28480 28480 04713 28400 20480	1855 0461 1855-0461 MC79L85C 1855-8589 1855-8589
A3Q 606	1655-0525	8	1	TRANSISTOR MOSFET N CHAN E-MODE SI	28480	1855-0525
A3R1 A3R2 A3R3 A3R4 A3R5	0757-0442 0698-6360 0698-3435 0757-0280 0757-1094	9 6 0 3 9	10 6 1 2 1	RESISTOR 10% 1% .125W F TC~0+-100 RESISTOR 10% .1% .125W F TC=0+-25 RESISTOR 3831% 125W FTC=0100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100	24545 28480 02995 24546 24546	C4 1/8 T0 1002 F 06/98-6360 50338 C4 1/8-T0-1001 F C4-1/0-T0-1471-F
A3R6 A3R7 A3R8 A3R9 A3R10	0757-0465 0757-0465 0757-0428 0698-3439 0698-3439	6 6 1 4	3 2 3	RESISTOR 100K 1% .125W F TC=0+:100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 178 1% .125W F TC=0++100 RESISTOR 178 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4 1/8-T0-1003 F C4 1/8-T0-1003 F C4-1/8-T0-103 F C4-1/8-T0-1221 F C4-1/8-T0-170R-F C4-1/8-T0-170R-F
A3R11 A3R12 A3R13 A3R14 A3R15	0757-0463 0757-0442 0757-0438 0698-3158 0757-0442	4 7 3 4 9	1 2 1	RESISTOR 80.5K 1% .125W F TC=0+-100 RESISTOR 10K 1% .1.25W F TC=0+-100 RESISTOR S.11K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4 1/8-T0-8252-F C4 1/8-T0-1002-F C4 1/8-T0-5111-F C4-1/8-T0-2372-F C4-1/8-T0-1002-F
A3R16 A3R17 A3R18 A3R19 A3R20	0698-3439 0757-0420 0757-0442 0698-3151 0698-3266	4 1 9 7 5	1 1	RESISTOR 170 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 2.87K 1% .125W F TC=0+-100 RESISTOR 237K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4 1/8-T0-170R-F C4 1/8-T0-16/21-F C4 1/8-T0-16/21-F C4-1/8-T0-2071-F C4-1/8-T0-2371-F
A3R21 A3R22 A3R23 A3R24 A3R25	0757-3151 0698-3455 0757-0442 0757-0442 0698-3266	3 4 9 9 5	1	RESISTOR 2 87K 1% 125W FTC=0100 RESISTOR 237K 1% 125W FTC=0100 RESISTOR 10K 1% 125W FTC=0100 RESISTOR 10K 1% 125W FTC=0100 RESISTOR 237K 1% 125W FTC-0100 RESISTOR 237K 1% 125W FTC-0100	24546 24546 24546 24546 24546	C4-1 8-TO-2871 F C4-1 8-TO-2373 F C4-1 8-TO-1002 F C4-1 8-TO-1002 F C4-1 8-TO-2371 F

Table 6-3. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A2	04951~60002	2	1	MEMORY BOARD AGGEMBLY	28490	04751-60002
A2C1 A2C2 A2C3 A2C4 A2C5	0160-3508 0160-3508 0160-3508 0160-3508 0160-3508	9 9 9 9	е	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1UF +80-20% 50VDC CER	28480 28480 28480 28480 28480 28480	0160-3508 0160-3508 0160-3508 0160-3508 0160-3508
A2C6 A2C7 A2CB A2C9 A2C10	0160-3508 0180-1846 0160-3508 0160-3878 0160-4426	96962	1 1	CAPACITOR-FXD 1UF +80-20% 35VDC CER CAPACITOR-FXD 2.2 -80-20% 35VTA CAPACITOR-FXD 1UF +80-20% 30VDC CER CAPACITOR-FXD 1000PF +-20% 100VDC CER CAPACITOR-FXD .01UF +-1% 100VDC CER	28480 04200 28480 28480 28480	0160-3500 15002254903582-DYS 0160-3508 0160-3878 0160-4426
A2CR1	1901-1080	ı	1	DIODE-SCHOTTKY INSBI7 200 1A	28480	1701-1080
A2E101 A2E102 A2E104 A2E105	1258-0218 1258-0218 1258-0218 1258-0218	0 0	4	MOFIL-8-10H6 WOFIL-8-10H6 WOFIL-8-10H6	28480 28480 28480 28480	1258-0218 1258-0218 1258-0218 1258-0218
A2J1 A2J2	1251-8822 1200-0607	4 0	1	60 POS CONNECTOR SOCKET-IC 16-CONT DIP DIP-SLDR	20480 28480	1251-8822 1200- 0 60 7
A2R1 A2R2 A2R3 A2R4 A2R207	0757-0279 0757-0403 0757-0280 0698-3150 0698-3159	0 2 3 4 5	1 1 1 2	RESIGTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 121 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% 1.25W F TC=0+-100 RESISTOR 26.1K 1% 125W FTC=0100	24546 24546 24546 24546 03292	C4·1/8-T0-3161-F C4·1/8-T0-121R-F C4·1/8-T0-1001-F C4·1/8-T0-2372-F CT4·1/8-T0-2512-F
A2R301 A2R501 A2R502 A2R503	1810-0281 1810-0406 1810-0406 1810-0406	9 0 0	1 3	NETWORK-RES 10-SIP100.0K OHM X 9 NETWORK-RES 8-SIP10.0K OHM X 4 NETWORK-RES 8-SIP10.0K OHM X 4 NETWORK-RES 8-SIP10.0K OHM X 4	01121 01121 01121 01121	210A104 2088103 2088103 2088103
A2S301	9164-0235	0	1	AUDIO TRANSDUCER PIEZO CERAMIC TYPE; 500	20480	9164-0235
A2TP1 A2TP2 A2TP3 A2TP4 A2TP300	1251 -8360 1251-8360 1251-8361 1251-8360 1251-8360	សសសសសស	7	CONNECTOR-SGL CONT PIN .025-IN-89C-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-89C-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-89C-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-89C-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ	28480 28480 28480 28480 28480	1251-0360 1251-0360 1251-0360 1251-0360 1251-0360
A2TP301 A2TP400	1251-9360 1251-8363	ยอ		CONNECTOR-SGL CONT PIN .025 IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN .025 IN-BSC-SZ SQ	20480 29490	1251-8360 1251-8360
A2U101 A2U103 A2U104 A2U105 A2U200	04951-10021 04951-10022 1818-3198 1818-3198 04951-10003	6 7 9 9 ε	1 1 6	MEM PROM 01 MEM PROM 23 ICM HM 6264 ICM HM 6264 MEM PROM 8FB1	28480 28480 06347 06347 28480	04951-10001 04951-10002 HM6264P-15 HM6264P-15 04951-10003
A2U201 A2U202 A2U203 A2U204 A2U205	1818-3198 1818-3198 1818-3198 1818-3198 04951-10004	0,0,0,0,0	1	ICM HM 6264 ICM HM 6264 ICM HM 6264 ICM HM 6264 ICM HM 6264 MEM PROM 8FB2	06347 06347 06347 06347 28480	HM6264P-15 HM6264P-15 HM6264P-15 HM6264P-15 O4951-10004
A2U206 A2U207 A2U300 A2U301 A2U302	1820-3014 1820-3014 1820-3552 1820-2928 1820-3077	3 3 4 0 0	1	IC DCDR CMOS 2-TO-4-LINE DUAL IC DCDR CMOS 2-TO-4 LINE DUAL NSCB10AN-1-TEMP IC-MC74:K373N IC DCDT CMOS/74HC 3-TO-8 LINE	20480 28480 28480 28480 28480	1020-3014 1820-3014 1820-3552 1820-2998 1020-3079
A2U303 A2U304 A2U401 A2U402 A2U403	1820-2924 1820-3082 1820-3082 1820-3081 1820-3298	00046	. 2	IC-HC74HC02N IC-HC74HC374N IC-HC74HC374N IC-FT CH05/74HC D-TYPE POS-EDGE-TRIG IC GATE CH05/74HC DR QUAD 2-INP	28480 28480 28480 28480 28480	1820-2924 1820-3082 1920-3082 1820-3081 1920-3228
A00404 A00500 A00503 A00504	1820-3208 1820-3196 1820-3081 1820-2466	7 :		IC CNTR CMOS/74HC BIN ASYNCHRO IC GATC CMOS/74HC NOR DUAL 4-INP IC FF CMOS/74HC D-TYPE POS-EDGE-TRIG IC TIMER CMOS	28480 28400 20480 32293	1020-3208 1020-3196 1020-3081 10M7555IPA
A2XE100 A2XE101 A2XE102 A2XE103 A2XE104	1251-4670 1251-8732 1251-8702 1251-4678 1251-8702	000000		CONNECTOR 3-PIN M POST TYPE CONN POST TYPE .100 -PIN-SPCG 16-CONT CONN-POST TYPE .100 -PIN-SPCG 16-CONT CONNECTOR 3-PIN M POST TYPE CONN POST TYPE .100-PIN-SPCG 16-CONT	28480 28480 20480 28480 28480 28480	1251-4670 1251-8702 1251-8702 1251-4670 1251-8702
A2XE105	1251-8702	9		CONN-POST TYPE .100-PIN-SPCG 16-CONT	28480	1251-8702
A2XU100 A2XU101 A2XU103 A2XU200 A2XU205	1200-0567 1200-0567 1200-0567 1200-0567 1200-0567	3		SOCKET-IC 28-CONT DIP DIP-SLDR SOCKCT-IC 20-CONT DIP DIP-SLDR SOCKET-IC 20-CONT DIP DIP-SLDR SOCKCT IC 28-CONT DIP DIP-SLDR SOCKET-IC 28-CONT DIP DIP-SLDR	20480 28480 20480 20480 20480	1200-0567 1200-0567 1200-0567 1200-0567 1200-0567
	04951-61601 04951-61692	\$	1 1	MAIN/MEMORY CBL MA, MC, MO, TP, CBL	20400 28480	04951-61601 04951-61602

10

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1U105 A1U106 A1U107 A1U204 A1U205	1820-3350 1820-3007 1820-2922 1820-3082 1020-3515	0 4 0 5 9	1 2 4 4 1	IC MUXR/DATA-GEL CM0S/74HC 4-TO-1-LINE IC GATE CH0S/74HC EXCL-OR QUAD 2-INP IC GATE CH0S/74HC NAND QUAD 2-INP IC-HC74HC374N IC 20530ACS	28480 28480 28480 28480 28480	1820-3350 1820-3007 1820-2922 1820-3082 1820-3515
A1U206 A1U207 A1U208 A1U209 A1U304	1920-3298 1820-3097 1820-3191 1820-3436 1820-3082	52735	1 3 4 1	IC GATE CHOS/74HC OR QUAD 2-INP IC GATE CHOS AND QUAD 2-INP IC HUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC-0-BIT HICROPROCESSOR; 4HHZ CLOCK IC-HC74HC374N	20480 28480 28480 28480 28480	1820-3298 1820-3097 1820-3191 1820-3436 1820-3082
A1U306 A1U307 A1U308 A1U484 A1U405	1820-3097 1820-3330 1820-2998 1820-3208 1820-3081	2 6 0 7 4	1 1 1 4	IC GATE CHOS AND QUAD 2-INP IC TRANSCEIVER CHOS/74HC BUS DCTL IC-MC74HC373N IC CNTR CHOS/74HC BIN ASYNCHRD IC FF CHOS/74HC DIN POS-EDGE-TRIG	28480 28480 28480 28480 28480	1820-3097 1820-3330 1820-2998 1820-3208 1820-3081
A1U486 A1U487 A1U408 A1U409 A1U410	1820-3081 1816-3198 1820-3191 1820-3191 1820-3191	4 9 7 7 7	1	1C FF CHOS/74HC D-TYPE POS-EDGE-TRIG IC CHOS 65536(GAK) STAT RAH 150-NS 3-S IC MUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC MUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE IC MUXR/DATA-SEL CHOS/74HC 2-TO-1-LINE	28480 28480 20480 28480 28480	1020-3081 1818-3199 1820-3191 1820-3191 1820-3191
A1U503 A1U505 A1U506 A1U508 A1U509	1820~3373 1820~2921 1820~2923 1820~3297 1820~2853	7 9 1 4 6	1 3 1 1	IC MU CMOS/74HC MONOSTEL CLEAR DUAL IC INU CMOS HEX IC GATE CMOS/74HC NAND TPL 3-INP IC DRVR CMOS/74HC BUS OCTL IC-68A45	28480 28480 28480 28400 02037	1820-3373 1820-2921 1820-2923 1820-3297 MC68A45P
A 1 1460 4 A 1 1460 5 A 1 1460 6 A 1 1460 7 A 1 1461 0	1826-0753 1820-2925 1820-2922 1818-1738 1820-2922	3 3 0 9	1 1	IC OP AMP LOW-BLAS-H-IMPD QUAD 14-DIP-C IC CNTR CHOS/74HC BIN SYNCHRO IC GATE CHOS/74HC NAND QUAD 2-IMP IC CHOS 16384 (16K) STAT RAM 200-NS 3-S IC GATE CHOS/74HC NAND QUAD 2-IMP	04713 28460 28460 54013 28480	MC34004BL 1820-2925 1820-2922 HM6116LP-4 1820-2922
A1U701 A1U705 A1U707 A1U708 A1U709	1820-3092 04951-10005 04951-10006 1820-2921 1820-3082	5 0 1 9 5	1 1	IC-HC74HC374N CHAR PROH 111 CHAR PROH 112 IC INV CHOS HEX IC-HC74HC374N	28480 26480 28430 28480 28480	1020-3082 04951-10005 04951-10006 1820-2921 1820-3082
A1UB03 A1UB04 A1UB05 A1UB06 A1UB07	1820-2924 1820-2921 1820-3007 1820-1922 1820-3081	2 9 4 8 4	1 . 1	IC-HC74HC02N IC INV CHOS HEX IC GATE CHOS/74HC EXCL-OR QUAD 2-INP IC SHF-RGTR TIL LS PRL-IN SERIAL-OUT IC FF CHOS/74HC D-TYPE POS-EDGE-TRIG	28480 28480 28480 01295 20480	1820-2924 1820-2921 1820-3007 5N74L5166N 1020-3081
A1U904 A1U905 A1U906 A1U907	1820-3081 1820-3196 1820-2922 1820-3097	4 20 0	1	IC CF CHOS/74HC D TYPE PDS-EDGE-TRIG IC GATE CHOS/74HC NOR DUAL 4-INP IC GATE CHOS/74HC NAND QUAD 2-INP IC GATE CHOS AND QUAD 2-INP	26430 20460 26480 26480	1820-3081 1020-3196 1820-2722 1820-3097
A1XJ105 A1XJ108 A1XJ203 A1XJ400 A1XJ402	1251-6857 1251-6857 1251-6857 1251-6857 1251-6857	1 1 1 1 1	15	CONNECTOR 2-PIN M POST TYPE	28480 28480 28480 20480 28480	1251-6857 1251-6857 1251-6857 1251-6857 1251-6857
A1XJ404 A1XJ405 A1XJ406 A1XJ504 A1XJ509	1251-6857 1251-6857 1251-6857 1251-6057 1251-6957	1 1 1 1		CONNECTOR 2-PIN M POST TYPE	28480 28480 28480 28480 20480	1251-6857 1251-6857 1251-6857 1251-6857 1251-6857
A1XJ510 A1XJ603 A1XJ703 A1XJ804 A1XJ809	1251-6857 1251-6857 1251-6857 1251-6857 1251-4670	1 1 1 1 2	1	CONNECTOR 2-PIN M POST TYPE	28480 20480 28480 28480 28480	1251-6057 1251-6057 1251-6057 1251-6857 1251-4670
A1 XU205 A1 XU209 A1 XU509 A1 XU608 A1 XU609	1200-0654 1200-0654 1200-0654 1200-0638 1200-0796	7 7 7 8	3 1 2	SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP-SLDR SOCKET-IC 40-CONT DIP DIP SLDR SOCKET-IC 14-CONT DIP DIP-SLDR SOCKET-IC 15-CONT DIP DIP-SLDR	28480 28480 28480 28480 28480	1200-0654 1200-0654 1200-0654 1200-0658 1200-0796
A1 XU705 A1 XU707 A1 XU810	1200-0567 1200-0567 1200-0796	1 1 8	2	SOCKET-IC 28-CONT DIP DIP-SLDR SOCKET-IC 28-CONT DIP DIP-SLDR SOCKET-IC 8-CONT DIP DIP-SLDR	20480 28480 20480	1200-0567 1200-0567 1200-0796
A1Y108 A1Y594 A1Y505	04101520 04100761 04101387	2 1 9	1 1 1	XTAL 8.064MHZ CRYSTAL-QUARTZ 4.915 MHZ HC-18/U-HLDR XTAL 3.6864MHZ	28480 28480 28480	0410-1520 0410-0761 0410-1307
	0380-0566 2200-0105 2260-0009 4330-0145	9 4 3 9	4 2 2 10	STANDOFF-RVT-ON 1.5-IN-LG 6-32THD SCREW-MACH 4-40 .312-IN-LG PAN-HD-P07I NUT-HEX-W/LK-JR 4-40-THD .094-IN-THK INSULATOR-BEAD GLASS	00000 00000 00000 20480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION ORDER BY DESCRIPTION 4330-0145

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	CD	Qty	Description	Mfr Code	Mfr Part Number
A1R32 A1R33 A1R34 A1R35 A1R36	0757-0442 8110-0179 0698-0085 0757-0145 0757-0460	9 7 6 9	2	RESISTOR 10K 1% .125W FTC=0100 WIRE, RESISTIVE: 362 OHM/FT 10 0833FT: RESISTOR 2 61K 1% 125W FTC=0+-100 RESISTOR 750K 1% 25W FTC=0+-100 RESISTOR 61 9K 1% 125W FTC-0+-100	24546 08696 03292 19701 24546	C4-1 8-T0-1002-F CUPRON CT4-1 8-T0-2611-F MF52C1 4-T0-7503-F C4-1 8-T0-6192-F
A1R38 A1R39 A1R41 A1R42 A1R43	0698-3442 0698-5217 0757-0465 0757-0465 0757-0442	9 0 6 6 9	1 2	RESISTOR 237 1% 125W F TC=O+-100 RESISTOR 28 7K 5% 125W F TC=O+-100 RESISTOR 100K 1% 125W F TC=O+-100 RESISTOR 100K 1% 125W F TC=O+-100 RESISTOR 100K 1% 125W F TC=O+-100 RESISTOR 10K 1% 125W F TC=O+-100	24546 03292 24546 24546 24546	C4-1 8-TO-237R-F NA4 C4-1 8-TO-1003-F C4-1 8-TO-1002-F C4-1 8-TO-1002-F
A1R44 A1R45 A1R46 A1R47 A1R48	0757-0442 0757-0465 0757-0458 0757-0465 0698-3430	9 6 7 6 5	2	RESISTOR 10K 1% 125W FTC=0+-100 RESISTOR 100K 1% 125W FTC=0+-100 RESISTOR 51 ht 1% 125W FTC=0+-100 RESISTOR 100K 1% 125W FTC=0+-100 RESISTOR 215 1% 125W FTC=0+-100	24546 24546 24546 24546 03888	C4-1 8-TO-1002-F C4-1 8-TO-1003-F C4-1 8-TO-5112-F C4-1 8-TO-1003-F PME55-1 8-TO-21R5-F
A1R49 A1R50 A1R51 A1R52 A1R54 A1R55	0757-0199 0757-0458 0757-0199 0757-0465 0757-0442 0757-0424	3 7 3 6 9 7	2	RESISTOR 21 5K 1% 125W F TC = 0 ÷ -100 RESISTOR 51 1K 1% 125W F TC = 0 ÷ -100 RESISTOR 21 5K 1% 125W F TC = 0 ← 100 RESISTOR 100K 1% 125W F TC = 0 ← 100 RESISTOR 10K 1% 125W F TC = 0 ← 100 RESISTOR 10K 1% 125W F TC = 0 ← 100 RESISTOR 1 1K 1% 125W F TC 0 ← 100	24546 24546 24546 24546 24546 03292	C4-1 8-TO-2152-F C4-1 8-TO-5112-F C4-1 8-TO-2152-F C4-1 8-TO-1003-F C4-1 8-TO-1002-F CT4-V8-TO-1101-F
A1R56 A1R57 A1R58 A1R59 A1R60	0698-0083 0686-1045 0698-3154 0757-0420 0698-3389	8 9 0 3 3	3 1 1 1	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 100K 5% .5W CC TC=0+802 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 17.8 1% .5W F TC=0+-100	24546 01121 24546 24546 20480	C4-1/8-TO-1961-F EB1045 C4-1/8-TO-4221-F C4-1/8-TO-751-F 0698-3389
A1R61 A1R62 A1R63 A1R64 A1R65	0757-0797 0757-0401 0698-0004 0757-0442 0686-1015	7 0 9 3	1	RESISTOR 90.9 1% .5W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100 5% .5W CC TC=0+529	28480 24546 24546 24546 01121	0757-0797 C4-1/8-T0-101-F C4-1/8-T0-2151-F C4-1/8-T0-1002-F EB1015
A1R66 A1R67 A1R68 A1R69 A1R70	0757-0401 0757-0465 0686-1045 0686-1045 0757-0280	0 6 9 9 3		RESISTOR 100 1% ,125M F TC=0+-100 RESISTOR 100K 1% .125M F TC=0+-100 RESISTOR 100K 5% .5M CC TC-0+882 RESISTOR 100K 5% .5M CC TC-0+802 RESISTOR 1K 1% .125M F TC=0+-100	24546 24546 01121 01121 24546	C4-1/8-T0-101-F C4-1/8-T0-1003 F EB1045 C4-1/8-T0-1001-F
A1R71 A1R72 A1R73 A1R74 A1R75	0757-0280 0698-3161 0698-3161 0757-0401 0698-3158	3 9 0 4	2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 38.3K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-3832-F C4-1/8-T0-3832-F C4-1/8-T0-101-F C4-1/8-T0-2372-F
A1R76 A1R77 A1R79 A1R80 A1R105	0757-0280 0698-3430 0757-0465 0757-0145 1810-0280	3 5 6 9 8	4	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 21.5.1% 125W F TC=0+-100 RESISTOR 10K 1% 125W F TC=0+-100 RESISTOR 750K 1% 25W F TC=0+-100 NETWORK-RES 10-SIP 10K 0HM X 9	24546 03888 24546 19701 05524	C4-1 8-TO-1001-F PME55-1-8-TO-21R5-F C4-1 8-TO-1003-F MF52C1-4-TO-7503-F CSC10A01-103G
A1R209 A1R309 A1R404 A1R503 A1R603	1810-0368 1810-0277 1810-0406 2100-3908 2100-3966	3 3 0 0 0 0	1 1 7	NETWORK RES 10-SIP 10K OHM X 5 NETWORK-RES 10-SIP 2 2K OHM X 9 NETWORK-RES 8-SIP 10 0K OHM X 4 RESISTOR-TRMR 1M 10% CC TOP-ADJ 1-TRN RESISTOR-TRMR 200K 10% C TOP-ADJ 1-TRN	02483 01121 01121 28480 28480	750-61-R10K 210A222 2088103 2100-3908 2100-3966
A1R702 A1R703 A1R704	2100-3096 1810-0369 2100-3089	6 4 7	1	RESISTOR-TRMR 50K 10% C TOP-ADJ 17-TRN NETWORK-RES 10-SIP 100K OHM X 5 RESISTOR-TRMR 5K 10% C TOP-ADJ 17-TRN	32997 02483 32997	3292W-1-503 750-61-R100K 3292W-1-502
A1T300 A1T500	04951-80016 9100-0453	00	1	100KHZ TRANSFORMER XFMR-FLYBACK	28480 28480	04951-80016 9100-0453
A1TP100 A1TP101 A1TP103 A1TP301 A1TP304	1251-8360 1251 8360 1251 8360 1251-8360 1251 8360	5 5 5 5 5	18	CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ	28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A1TP402 A1TP403 A1TP404 A1TP405 A1TP406	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360	00000		CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-BSC-SZ SQ	28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A1TP510 A1TP604 A1TP704 A1TP803 A1TP804 A1GND	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360 1251-8360	מו מו מו מו מו מו		CONNECTOR-SGL CONT PIN 025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN .025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-8SC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-8SC-SZ SQ	28480 28480 28480 28480 28480 28480	1251-8360 1251-8360 1251-8360 1251-8360 1251-8360 1251-8360
A1U100 A1U101 A1U102 A1U103 A1U104	1826-0412 1826-0544 1826-0275 1826-0468 1826-1066	. O4120	1 1 1 1	IC COMPARATOR PRON DUAL 8-DIP-P PKG V REF 8-DIP-C IC 78112A V RGLTR TO-92 IC COMPARATOR GP 8-DIP-P PKG IC-VOLTAGE REGULATOR 2A PIN PLASTIC PKG	27014 04713 04713 04713 28480	LM393N MC1403U MC78L12ACP MC3423P1 1826-1066

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C	Qty	Description	Mfr Code	Mfr Part Number
A1CR21 A1CR22 A1CR100	1901-0040 1901-0518 1884-0293	1 8 8	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SM SIG SCHOTTKY THYRISTOR-SCR	28480 28480 04713	1901-0040 1901-0518 MCR692
A1 DS1	2140-0013	5	1	LAMP-GLOW 5AB-A 70/57VDC 300UA T-2-EULB	08806	SAD-A(NE-23A)
A1J1 A1J2 A1J105 A1J108 A1J203	1251-8827 1251-8828 1258-0141 1258-0141 1258-0141	9 0 8 8	1 1 16	60 POSITION CONN 40 POSITION CONN JUHPER-REM JUHPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1251-8827 1251-8828 1258-0141 1258-0141 1258-0141
A1J204 A1J400 A1J402 A1J404 A1J405	1251-4246 1258-0141 1258-0141 1258-0141 1258-0141	8 8	1	CONNECTOR 3-PIN M POST TYPE JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1251-4246 1258-0141 1258-0141 1258-0141 1258-0141
A1J406 A1J504 A1J509 A1J510 A1J603	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141	8 8 8		JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM JUMPER-REM	28480 28480 28480 28480 28480	1258-0141 1258-0141 1258-0141 1258-0141 1258-0141
A1J608 A1J609 A1J700 A1J703 A1J801	1251-4292 1251-4398 1251-3825 1258-0141 1251-3751	4 1 7 8 0	1 2	SHUNT-DIP 7 POSITIONS CONNECTOR SHUNT-4 POSITION CONNECTOR-POST-TP-HDC JUMPER-REM CONNECTOR 8-PIN M POST TYPE	28480 26480 03418 28480 28480	1251-4292 1251-4398 09-65-1051 1258-0141 1251-3751
A1J804 A1J809 A1J810	1258-0217 1258-0141 1251-4378	9 8 1	1	MULTI-R-JUMP Jumper-Rem Connector Shunt-4 Position	28480 28480 20480	1258-0217 1258-0141 1251-4398
A1L1 A1L2 A1L3 A1L4 A1L5	04951-80017 9140-0801 04951-80015 9140-0319 9140-0407	1 6 9 1 8	1 1 1	INDUCTOR 2MH —10% TOROIDAL CHOKE COUPLED INDUCTOR COIL-LINEARITY CL-V 10UH MIN	28480 28480 28480 28480 28480	04951-80017 9140-0801 04951-80015 9140-0319 9140-0407
A1 Q301 A1 Q302 A1 Q400 A1 Q402 A1 Q403	1854-0215 1855-0526 1855-0525 1855-0402 1855-0492	1 7 0 8	1 1 2 1 2	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR MOSFET P-CHAN E-MODE SI TRANSISTOR MOSFET N-CHAN E-MODE SI TRANSISTOR J FET 2N5115 P-CHAN D-MODE TRANSISTOR HOSFET N-CHAN E-MODE TO-220	04713 28480 28400 17856 28400	2N3904 1855-0526 1055-0525 2N5115 1855-0492
A1Q404 A1Q405 A1Q601 A1Q602 A1Q603	1855-0492 1826-0276 1855-0524 1855-0524 1855-0525	8 5 7 7 8	1 2	TRANSISTOR MOSFET N-CHAN E-MODE TD-220 IC 78L05A V RGLTR TO-92 TRANSISTOR MOSFET N-CHAN E-MODE TO-220 TRANSISTOR MOSFET N-CHAN E-MODE TO-220 TRANSISTOR MOSFET N-CHAN E-MODE SI	28480 04713 28480 28480 28480	1855-0490 MC78L05ACP 1855-0524 1855-0524 1855-0525
A1Q703 A1Q704 A1Q801 A1Q803 A1Q804	1854-0659 1853-0436 1853-0536 1854-0730 1826-0285	7 6 7 5 6	1 1 1 2 1	TRANSISTOR NPN SI PD=12.5W FT=50MHZ TRANSISTOR PNP SI PD=1.5W FT=50MHZ TRANSISTOR PNP SI TO-92 PD=350MW TRANSISTOR NPN SI TO-92 IC V RGLTR TO-92	04713 04713 20480 04713 04713	MJE180 MJE170 1853-0536 MP56531 MG79L05C
A1Q903	1854-0730	5		TRANSISTOR NPN SI TO-92	04713	MPS6531
A1R1 A1R2 A1R3 A1R4 A1R5	0757-0288 0698-3266 0757-0438 0698-3446 0698-7929	1 5 3 3 5	1 2 2 1 1	RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 237K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 303 1% .125W F TC=0+-100 RESISTOR 9.09K .1% .125W F TC=0+-50	19701 24546 24546 24546 19701	MF4C1/8-T0-9091-F C4-1/8-T0-2373-F C4-1/8-T0-5111-F C4-1/8-T0-383R-F MF4C1/8-T2-9091-B
A1R6 A1R7 A1R8 A1R9 A1R10	0757-0416 0757-0401 0698-8463 0699-0589 0698-3447	7 0 4 1 4	1 4 1 1	RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=6+-100 RESISTOR 404.2 .1% .125W F TC=0+-25 RESISTOR 34.334K .1% .125W F TC=0+-25 RESISTOR 422 1% .125W F TC=0+-100	24546 24546 28430 28480 24546	C4-1/8-T0-511R-F C4-1/8-T0-101-F 0698-8463 0699-0589 C4-1/8-T0-422R-F
A1R11 A1R12 A1R13 A1R14 A1R15	0757-0442 0757-0465 0698-0084 0757-0442 0698-8827	9 6 9 4	11 9 3	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1M 1% .125W F TC=0+-100	24546 24546 24546 24546 28480	C4·1/8-T0-1002-F C4-1/8-T0-1003-F C4-1/8-T0-2151-F C4-1/8-T0-1002-F 0698-8827
A1R16 A1R17 A1R18 A1R19 A1R20	0698-3266 0698-3441 0757-0442 0757-0444 0698-3159	5 8 9 1 5	1	RESISTOR 237K 1% .125W F TC=0+-100 RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 12 1K 1% .125W FTC=0+-100 RESISTOR 26 1K 1% .125W FTC=0+-100	24546 24546 24546 02995 02995	C4-1/8-T0-2373-F C4-1/8-T0-215R-F C4-1/8-T0-1002-F 5033R 5033R
A1R21 A1R22 A1R23 A1R24 A1R25	0757-0466 0698-0084 0757-0317 0757-0442 0757-0346	7 9 7 9 2	1 1 2	RESISTOR 110K 1% .125W FTC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	02995 24546 24546 24546 24546	5033R C4-1/8-T0-2151-F C4-1/8-T0-1331-F C4-1/8-T0-1002-F C4-1/8-T0-10R0-F
A1R26 A1R27 A1R28 A1R29 A1R31	0698-3153 0757-0436 0757-0346 0757-0465 0757-0280	9 3 2 6 3	1	RESISTOR 3.83K 1% .125W F TC=0+-100 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-3831=F C4-1/8-T0-5111=F C4-1/8-T0-18R0=F C4-1/8-T0-1003=F C4-1/8-T0-1001=F

Table 6-7. Replaceable Parts (Continued)

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	04951-60001	1	1	MAIN BOARD (ALL UNITS EXCEPT OPTION 003)	28480	04951-60001
A18T1	1420-0264	1	1	8 ATTERY 3 6V 065A-HR NI-CD PIN	19209	418013AD00201 (DS3GT)
A1C1 A1C2 A1C3 A1C4 A1C5	0160-0576 0160-3508 0160-4822 0160-4832 0160-4789	5 9 2 4 0	12 4 2 1 6	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +00-20% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD .01UF +-10% 100VDC CER CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30	28480 28480 28480 29480 28480	0160-0576 0160-3508 0160-4922 0160-4832 0160-4789
A1C6 A1C7 A1C8 A1C9 A1C10	0160-4789 0180-2683 0180-3374 0160-3879 0160-3879	0 1 9 7	1 1 5	CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 47UF10% 35VDC TA CAPACITOR-FXD 4700UF+30-10% 35VDC AL CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD .01UF +-20% 100VDC CER	28480 03923 28480 28480 28480	0160-4789 OS10474 0180-3374 0160-3879 0160-3879
A1C11 A1C12 A1C13 A1C14 A1C15	0160-3508 0160-4822 0180-3376 0160-4824 0180-3375	9 2 1 4 0	2 1 1	CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD 1000PF +-5% 100VDC CER CAPACITOR-FXD 2200UF+30-10% 25VDC AL CAPACITOR-FXD 680PF +-5% 100VDC CER CAPACITOR-FXD 3300UF+30-10% 16VDC AL	28480 28480 28480 28480 28480	0160-3508 0160-4822 0180-3376 0160-4824 018 0 -3375
A1C16 A1C17 A1C19 A1C20 A1C21	0160-3508 0160-0576 0160-2055 0160-3879 0180-3376	9 5 9 7		CAPACITOR-FXD 1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 01UF 100VDC CAPACITOR-FXD .01UF +-20% 100VDC CER CAPACITOR-FXD 2200UF+30-10% 25VDC AL	2848 0 2848 0 04200 2848 0 2848 0	0160-3508 0160-0576 CO23F101F103ZS22-CDA 0160-3879 0180-3376
A1C22 A1C23 A1C24 A1C25 A1C26	0160-0576 0160-0576 0160-0576 0160-3508 0160-0996	5 5 9 3	1	CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 1UF +00-20% 50VDC CER CAPACITOR-FXD .01UF +-20% 2KVDC CER	28480 28480 28480 28480 72982	0160-0576 0160-0576 0160-0576 0160-3508 828-012-25U0-103M
A1C27 A1C28 A1C29 A1C30 A1C31	0160-4663 0160-0576 0160-4953 0160-0576 0160-4663	7 5 0 5 9	1 1 2	CAPACITOR-FXD 2 2UF +80 20% 100VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .027UF +-5% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 2.2UF +80 -20% 100VDC CER	28480 28480 28480 28480 28480	0160-4663 0160-0576 0160-4953 0160-0576 0160-4663
A1C32 A1C33 A1C34 A1C35 A1C36	0180-3377 0160-4789 0160-4789 0160-3071 0170-0040	2 0 0 1	1 1 1	CAPACITOR-FXD 47UF+-20% 50VDC AL CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 10UF +-10% 100VDC CAPACITOR-FXD .047UF +-10% 200VDC POLYE	28480 28480 28480 01456 56289	0180-3377 0160-4789 0160-4789 17UB106K 292P47392
A1C37 A1C38 A1C39 A1C40 A1C41	0160-4579 0160-0576 0160-0576 0160-0576 0160-0576	40000	1	CAPACITOR-FXD .1UF +-5% 160VDC MET-POLYC CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-4579 0160-0576 0160-0576 0160-0576 0160-0576
A1C42 A1C43 A1C44 A1C45 A1C46	0160-4230 0160-4663 0160-4808 0160-4804 0160-3879	6 9 4 0 7	3 1 2	CAPACITOR-FXD .01UF +80-20% 1KVDC CER CAPACITOR-FXD 2.2UF +80-20% 100VDC CER CAPACITOR-FXD 470PF +-5% 100VDC CER CAPACITOR-FXD 56PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +-20% 100VDC CER	71590 28480 29480 28480 28480	GAP-103 0160-4663 0160-4808 0160-4804 0160-3879
A1C47 A1C48 A1C49 A1C50 A1C51	0160-0576 0160-4230 0160-4230 0160-4804 0160-4370	56605	1	CAPACITOR-FXD .1UF +=20% SOVDC CER CAPACITOR-FXD .01UF +80-20% 1KVDC CER CAPACITOR-FXD .01UF +80-20% 1KVDC CER CAPACITOR-FXD SAPF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 1000°F +-5% 200VDC CER	28480 71590 71590 28480 51642	0160-0576 GAP-103 GAP-103 0160-4804 200-200-NP0-102J
A1C52 A1C53 A1C54	(1160-4801 0160-4789 0160-4789	7 0 0	1	CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 15PF +-5% 100VDC CER 0+-30	28480 20480 28480	0160-4901 0160-4789 0160-4789
A1CR1 A1CR2 A1CR3 A1CR4 A1CR5	1901-0704 1901-0704 1901-0050 1901-0050 1901-0871	4 4 3 3 6	2 3 4	DIODE -PWR RECT 1N4002 100V 1A D0-41 DIODE-PWR RECT 1N4002 100V 1A D0-41 DIODE-SWITCHING 80V 200MA 2NS D0-35 DIODE-SWITCHING 80V 200MA 2NS D0-35 DIODE -PWR RECT 150V 2.5A 25NS	01275 01295 28480 28480 12969	1N4002 1N4002 1901-0050 1701-0050 UES1103
A1CR6 A1CR7 A1CR8 A1CR9 A1CR10	1901-0871 1901-0871 1901-0871 1901-0871 1901-0892	6 6 6 2 2	5	DIODE-PWR RECT 150V 2.5A 25NS DIODE-PWR RECT 150V 2.5A 25NS DIODE-PWR RECT 150V 2.5A 25NS DIODE-SCHOTTKY 1N5822 40V 3A DIODE-SCHOTTKY 1N5822 40V 3A	12969 12969 12969 28480 28480	UES1103 UES1103 UES1103 1901-0992 1901-0992
A1CR11 A1CR12 A1CR13 A1CR14 A1CR15	1701-0845 1701-1105 1702-3323 1701-1105 1701-0040	4 1 1 1	1 2 1 3	DIODE 410 RECT 2KU 50MA 250NS DIODE-HU RECTIFIER DIODE ZNR 42.2V 5% DO-35 PD=.4W TC=+.08% DIODE-HU RECTIFIER DIODE-SWITCHING 30V 50MA 2NS DU-35	18546 28480 28480 28480 28480	VG-2X 1901-1105 1902-3323 1901-1105 1901-0040
A1 CR16 A1 CR17 A1 CR18 A1 CR19 A1 CR20	1901-0692 1701-0040 1901-0050 1701-0518 1902-0949	9 1 3 8 1	1 2 1	DIODE-PWR RECT 200V 3A 200NS DIODE-SWITCHING 30V 50HA 2NS DO-35 DIODE-SWITCHING 80V 200HA 2NS DO-35 DIODE-SH SIG SCHOTTKY DIODE-ZNR 4.3V 5% DO-35 PD=.4W TC=+.017%	04713 28480 20480 28480 28480	MRG52 1901-0040 1901-0050 1901-0518 1902-0949

]

]

1

4

						
Ref. Desig.	PN	CD	Qty	Description	Mfg Code	Mfg PN
1,1	5041-6701	3	1	Key cap, pearl gray	28480	5041-6701
2,"	5041-6702	4	1	Key cap, pearl gray	28480	5041-6702
3,#	5041-6703	5	1	Key cap, pearl gray	28480	5041-6703
4,\$	5041-6704	6	1	Key cap, pearl gray	28480	5441-6704
5,%	5041-6705	7	1	Key cap, pearl gray	28480	5041-6705
6,&	5041-6706	8	1	Key cap, pearl gray	28480	5041-6706
7,'	5041-6707	9	1	Key cap, pearl gray	28480	5041-6707
8,(5041-6708	0	1	Key cap, pearl gray	28480	5041-6708
9,)	5041-6709	1	1	Key cap, pearl gray	28480	5041-6709
0 , DEL,-	5041-6710	4	1	Key cap, pearl gray	28480	5041-6710
A,SOH	5041-6711	5	1	Key cap, pearl gray	28480	5041-6711
B,STX	5041-6712	6	1	Key cap, pearl gray	28480	5041-6712
C,ETX	5041-6713	7	1	Key cap, pearl gray	28480	5041-6713
D EOT	5041-6714	8	1	Key cap, pearl gray	28480	5041-6714
E, ENQ	5041-6715	9	1	Key cap, pearl gray	28480	5041-6715
F, ACK	5041-6716	0	1	Key cap, pearl gray	28480	5041-6716
G , BEL	5041-6717	1	1	Key cap, pearl gray	28480	5041-6717
H,BS	5041-6718	2	1	Key cap, pearl gray	28480	5041-6718
I, HT	5041-6719	3	1	Key cap, pearl gray	28480	5041-6719
J, LF	5041-6720	6	1	Key cap, pearl gray	28480	5041-6720
K, VT	5041-6721	7	1	Key cap, pearl gray	28480	5041-6721
L,FF	5041-6522	8	1	Key cap, pearl gray	28480	5041-6722
M, CR	5041-6523	9	1	Key cap, pearl gray	28480	5041-6723
N,SO	5041-6524	0	1	Key cap, pearl gray	28480	5041-6724
O , SI	5041-6525	1	1	Key cap, pearl gray	28480	5041-6725
P DLE	5041-6726	2	1	Key cap, pearl gray	28480	5041-6726
Q,DC1	5041-6727	3	1	Key cap, pearl gray	28480	5041-6727
R,DC2	5041-6728	4	1	Key cap, pearl gray	28480	5041-6728
S,DC3	5041-6729	5	1	Key cap, pearl gray	28480	5041-6729
T, DC4	5041-6730	6	1	Key cap, pearl gray	28480	5041-6730
U, NAK	5041-6731	7	1	Key cap, pearl gray	28480	5041-6731
V, SYN	5041-6732	8	1	Key cap, pearl gray	28480	5041-6732
W , ETB	5041-6733	9	1	Key cap, pearl gray	28480	5041-6733
X, CAN	5041-6734	0	1	Key cap, pearl gray	28480	5041-6734
Y,EM	5041-6735	3	1	Key cap, pearl gray	28480	5041-6735
Z, SUB	5041-6736	4	1	Key cap, pearl gray	28480	5041-6736
=	5041-6737	5	1	Key cap, pearl gray	28480	5041-6737
, RS , ~	5041-6738	6	1	Key cap, pearl gray	28480	5041-6738
@, NUL,	5041-6739	7	1	Key cap, pearl gray	28480	5041-6739
RTN	5041-6740	0	1	Key cap, pearl gray	28480	5041-6740
	1			,	20400	3041 0740

HP 4951A Replaceable Parts

Ref. Desig.	PN	CD	Qty	Description	Mfg Code	Mfg PN
;,+	5041-6741	1	1	Key cap, pearl gray	28480	5041-6741
:,*	5041-6742	2	1	Key cap, pearl gray	28480	5041-6742
shift	5041-6743	3	2	Key cap, moss gray	28480	5041-6743
,,<	5041-6744	4	1	Key cap, pearl gray	28480	5041-6744
.,>	5041-6745	5	1	Key cap, pearl gray	28480	5041-6745
/,US,?	5041-6746	6	1	Key cap, pearl gray	28480	5041-6746
EXIT(HALT)	5040-4482	1	1	Key cap, pearl gray	28480	5040-4482
MORE	5040-4483	2	1	Key cap, pearl gray	28480	5040-4483
(up arrow)	5040-4484	3	1	Key cap, pearl gray	28480	5040-4484
(down arrow)	5040-4485	4	1	Key cap, pearl gray	28480	5040-4485
(left arrow)	5040-4486	5	1	Key cap, pearl gray	28480	5040-4486
(right arrow)	5040-4487	6	1	Key cap, pearl gray	28480	5040-4487
[,ESC,{	5040-4488	7	1	Key cap, pearl gray	28480	5040-4488
], GS,}	5040-4489	8	1	Key cap, pearl gray	28480	5040-4489
FS,:	5040-4490	9	1	Key cap, pearl gray	28480	5040-4490
CNTL	5040-4491	2	1	Key cap, pearl gray	28480	5040-4491
(BLANK)	5040-4492	3	6	Key cap, moss gray	28480	5040-4492

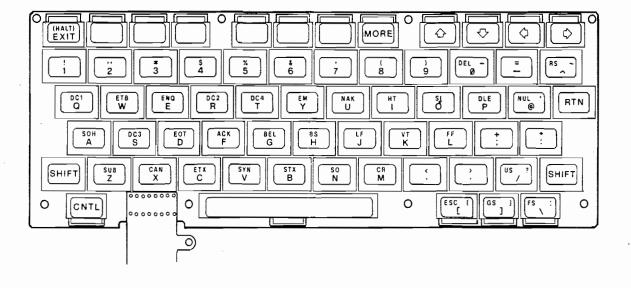


Figure 6-5. HP 4951A Keyboard Assembly

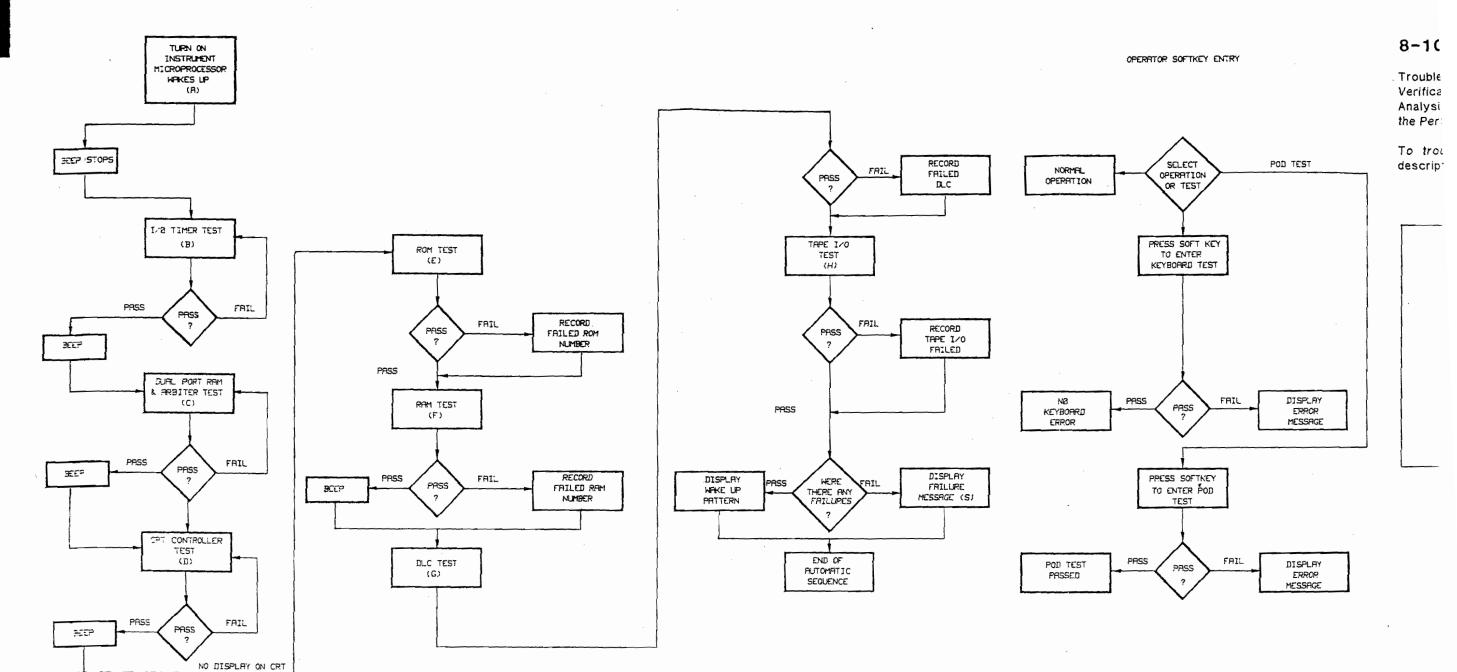


Figure 8-1. Performance Verification Flowchart

DISPLAY ON CRT

8-10. TROUBLESHOOTING

Troubleshooting the HP 4951A is a two part process. Use the results of the Performance Verification tests to identify the circuit with problems. Once the circuit is identified, use the Signature Analysis routines to isolate the problem component level. Table 8-2 illustrates the failure table for the Performance Verification test sequence. Figure 8-1 is the Performance Verification flowchart.

To troubleshoot, perform the Performance Verification tests and note any failures. The test descriptions contain the test failure code, description and troubleshooting procedure.

Table 8-2. Test Failures

TEST	FAILURES
BOM 0	00
ROM 2	00
ROM 8-1	00
ROM 8-2	00
RAM 2	
RAM 6	00
RAM 8	00
RAM A	00
RAM C	00
RAM E	00
DLC	00
TAPE	00
Number of tests = (total	number of tests performed)

A. TURN ON INSTRUMENT/MICROPROCESSOR WAKES UP

Test Failure Code

continuous beep

Description

When the beep stops the microprocessor and the power supply are working.

Failure Troubleshooting

1. Perform the No Op signature analysis on the microprocessor, Table 8-3.

B. I/O TIMER

Test Failure Code

no beep

Description

Tests the operation of the Dual Port RAM and the arbiter circuits.

Failure Troubleshooting

1. Perform the signature analysis routine for the I/O Timer, Table 8-4.

C. DUAL PORT RAM AND ARBITER

Test Failure Code

no beep

Description

Tests operation of Dual Port RAM and Arbiter circuit.

Failure Troubleshooting

- 1. Perform the signature analysis routine for the Dual Port RAM, Tables 8-12 and 8-13.
- 2. Perform the signature analysis routine for the Arbiter, Tables 8-5, 8-6, 8-7, and 8-8.

D. CRT CONTROLLER

Test Failure Code

no beep no CRT display

Description

Checks operation of the deflection circuits.

Failure Troubleshooting

- 1. Perform the signature analysis routine for the CRT Controller, Tables 8-15 through 8-19.
- If the CRT display does not turn on, perform the Signature Analysis routine and analog troubleshooting procedures for the Deflection Circuitry, Table 8-20.

E. ROM

Test Failure Code

The ROM test is performed once at turn on. ROM failures are displayed under FAILURES by the appropriate ROM on the CRT.

Description

The microprocessor checks all ROMs (except ROM 0000) and places pass/fail information in memory. If any ROM device fails after the test sequence is performed, the Test Failure Table is displayed. Press EXIT(HALT) to access the Top Level menu.

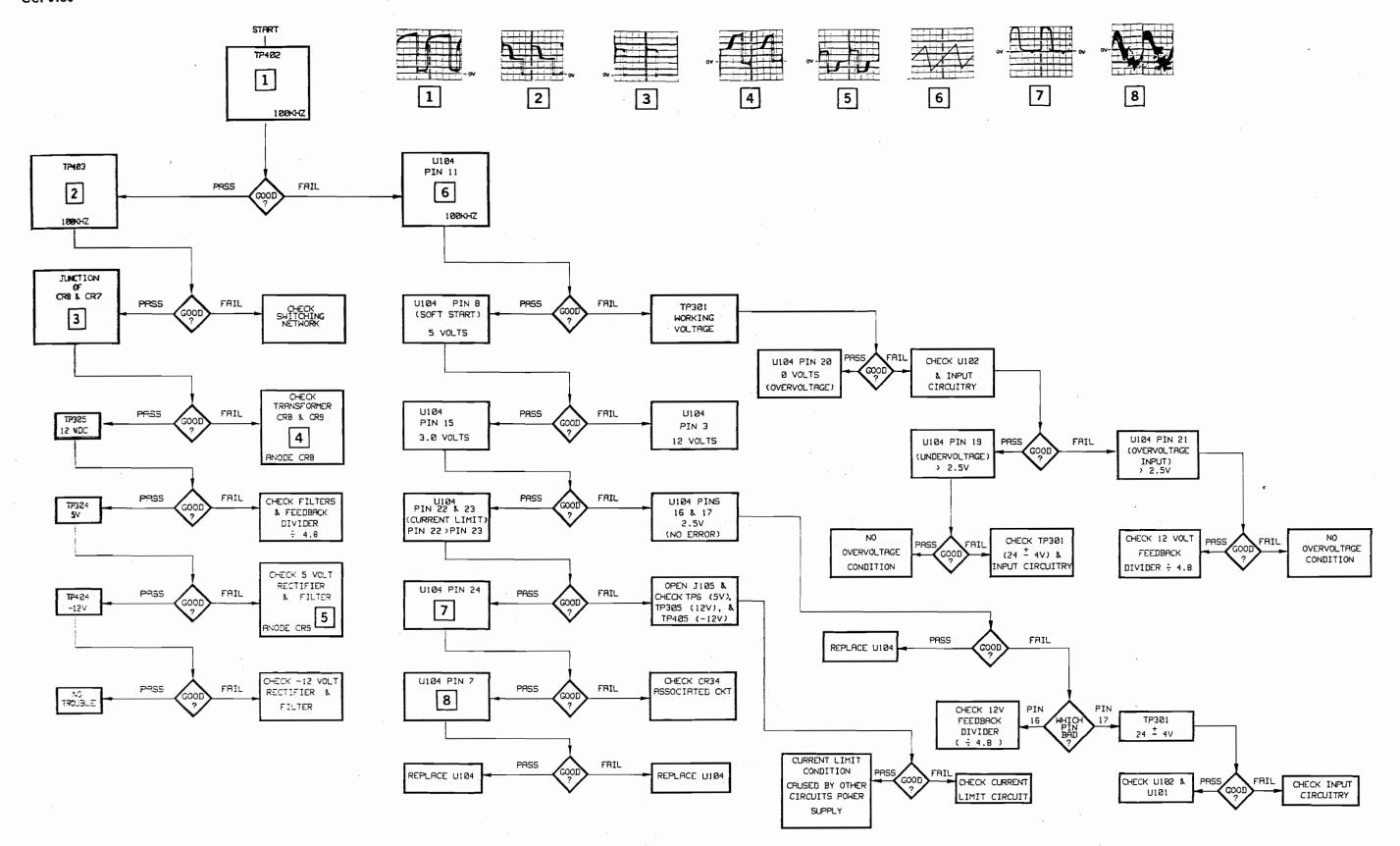
Failure Troubleshooting

1. Perform signature analysis routine for the Memory Decoder, Table 8-11.

F. RAM

Test Failure Code

The RAM test is performed once at turn on. RAM failures are displayed under FAILURES by the appropriate RAM on the CRT.


Description

The microprocessor checks all RAM and places pass/fail information in memory. If any RAM device fails after the test sequence is performed, the Test Failure Table is displayed. Press EXIT(HALT) to access the Top Level menu.

Failure Troubleshooting

1. Perform signature analysis routine for the Memory Decoder, Table 8-11.

8-1

To tro

8-13

If the Section Enter

Sε

G. DATA LINK CONTROL CIRCUITRY (DLC)

Test Failure Code

Number of times failed displayed under FAILURES column.

Description

Microprocessor checks the DLC for proper operation.

Failure Troubleshooting

1. Perform the signature analysis routine for the DLC, Table 8-21.

H. TAPE I/O

Test Failure Code

Number of times failed displayed under FAILURES column.

Description

Checks digital circuitry.

Failure Troubleshooting

1. The Tape I/O troubleshooting procedures begin paragraph 8-19. Start at the beginning and complete all procedures.

8-12, POWER SUPPLY TROUBLESHOOTING

To troubleshoot the Power Supply, work through the flowchart in Figure 8-2.

8-13. TAPE I/O ANALOG TROUBLESHOOTING

If the Signature Analysis for the Tape I/O passes, then the problem can be found in the Analog Section of the Tape Board. To determine the part of the circuitry where the problem is located. Enter the program in step 3.

Set Up

- 1. Insert a cassette tape.
- 2. Turn on the HP 4951A.

3. Enter the simulate program in Table 8-2.

Table 8-2. Simulate Test for Option 001

Select SIMULATE DTE SEND SOME MESSAGE Type in Press RTN **EXIT** MORE Select MASS STORE TENSION Wait for the tape drive to stop Select INIT A warning should appear on the CRT Select **EXECUTE** Wait until the tape drive stops Select STORE Insert a file name

msert a me name

Select EXECUTE

Wait until the tape drive stops

Press

EXIT

Select

LOAD

Insert the file name input during store operation

Select

EXECUTE

Wait until the tape drive stops

4. If no error messages are displayed in any of the steps in procedure 3, then the analog circuit is 100% tested and working.

8-14. READ AMPLIFIER TROUBLESHOOTING

Description

Troubleshooting procedure for the Read Amplifier circuitry.

Equipment

3310B Function Generator

Procedure

- 1. Turn off the HP 4951A.
- For A3E304, set switches 1,2, and 4 closed and 3 open.
- Turn on the HP 4951A.
- 4. The wake up menu should be on the display.
- 5. Check pin 6 of A3U507 and A3U508, they should be high and low respectively.
- 6. Pin 10 of A3U507 and A3U508 should be high.
- 7. Pin 9 of A3U507 and A3U508 should be low.
- 8. Connect a Function Generator to A3U508 pins 3 and 13. The low side of the Function Generator should be connected to pin 3. Check the signals at A3U506 and A3U607 against the waveforms shown on the Tape Board Schematic.
 - a. Set up the Function Generator as follows:

Function = sine wave Frequency = 33kHz at 50 mVp-p

8-15. MOTOR SPEED CONTROL TROUBLESHOOTING

Procedure

- 1. Turn off the HP 4951A.
- 2. Set all switches of A3E304 to closed (DMA).
- 3. Turn on the HP 4951A.
- 4. The waveforms shown on the schematic should be displayed.

Table 8-3. Microprocessor No Op Signatures

LOOP:

ī

į

1

1

3

Microprocessor No Ops

PCA: A1 Main Board

SET UP:

Remove A1J108, move A1J809 to T, and on PC board,

open A 2E 101 and A 2E 102. To disable beeper, place a jumper

from ground on the A2 board to A2R2O7 (end nearest

board edge.

SIGNATURE

NORM

START/STOP

+

A 1U209 pin 8 (A 15)

QUAL

CLOCK

_

A 1U209 pin 32

GROUND

A 1U209 pin 20

Vh = 0001 (+5 V)

U209 1 = HC89 (A8)

2 = 2H70(A9)

3 = HPPO(A10)

4 = 1293 (A11)

5 = HAP7 (A12)

6 = 3C96(A13)

7 = 3827 (A14)

2550 (415)

8 = 755P(A15)

12 = UUUU (D0)

13 = 5555(D1)

14 = CCCC(D2)

15 = 7F7F(D3)

16 = 5H21(D4)

17 = OAFA(D5)

18 = UPFH(D6)

19 = 52F8(D7)

A2U101 pin 20 - 6H49

NOTE: Replace A 1J 108, A 1J 809, A 2E 101 and A 2E 102 at end of test

Table 8-5. Arbiter Signature Analysis

LOOP:

Arbiter

PCA: A 1 Main Board

SET UP:

Connect A 1J406 and A 1J405 to T on PC board for turn on condition. To disable beeper, place a jumper from ground on the A2 board to A2R207

nearest board edge)

SIGNATURE

NORM

START/STOP

A 1U605 pin 12

QUAL

CLOCK

+

1U605 pin 2

Vh = OOUP

U306 1 = 00U1

2 = 00F2

3 = 00F1

U405 2 = 00U1

3 = 0033

5 = 003F

6 = 00F2

8 = 000U

9 = 0001

11 = 000P

12 = 0001

U406 2 = 003F

3 = 00FH

5 = 0000

9 = 00UP (high)

11 = 00FH

12 = 00UP (high)

U505 10 = 00FH

1

į

1

1

1

11 = 0033

12 = 00UP

13 = 0000

Table 8-4. I/O Timer Signature Analysis

LOOP: I/O Timer PCA: A2 Memory Board

SET UP:

Pull A 1U304 pin 3 low. Disconnect the Interface Pod.

(To disable beeper, place a jumper from ground on the

A2 board to A2R2O7, end nearest board edge).

SIGNATURE

NORM

+

START/STOP

A 2U 4O 1 pin 2

CLOCK

A2TP4

GROUND

A2TP GND

Vh = A803 (+5 V)

U300 2 = 45C5

4 = 0000 (low)

5 = 0000 (low)

6 = A803 (high)

7 = 0000

8 = 0000

10 = A803

11 = 45C5

12 = 2F56

13 = 90AA

14 = A9UU

15 = 3F27

16 = 73HH

17 = CU86

18 = 35HC

19 = P3PP

21 = F1PF

22 = 7769

23 = 15H9

24 = H5HC

25 = 95H1

26 = 8A31

27 = C163

28 = UU94

29 = U07C

30 = HHHA

31 = 4576

32 = U576

33 = 6574

34 = 228F

35 = AF58

36 = UUP5

37 = 6783

38 = 16PP

39 = H22C

1)[1]

Table 8-6. Arbiter Signature Analysis

LOOP: Arbiter PCA: A 1 Main Board SET UP: Jumper A 1J406 and A 1J405 to T on the PC board, the turn on condition. To disable beeper, place a jumper from ground on the A2 board to A2R207 (end nearest board edge).

 SIGNATURE
 NORM

 START/STOP
 +
 A 1U605 pin 12

 QUAL
 +
 A 1U605 pin 2

Vh = OOUP

U506 1 = 00U1 2 = 0055 3 = 00UP (high) 4 = 000U 5 = 00F2 6 = 00UH 12 = 00PP 13 = 0033

U605 12 = 00U1 13 = 0033 14 = 0055

U606 1 = 00UP (high) 2 = 000U 3 = 00U1 4 = 00F1 5 = 0000 (high) 6 = 00UP

After test return AlJ406 and AlJ405 to normal positions.

Table 8-7. Arbiter Signature Analysis

LOOP: Arbiter PCA: A 1 Main Board

SET UP: A1J108 open, set A1J809 to T.

Pull down A1R54 (the leg nearest the edge of

the PC board). Remove jumpers A2E101 and A2E102. To disable beeper, place a jumper from ground on the A2 board to A2R2O7 (end nearest board edge).

NORM SIGNATURE START/STOP A 1U308 pin 18 QUAL **CLOCK** A 1U209 pin 32 GROUND A 1U209 pin 20

Vh = CC34

]

1

1

U308 2 = 96PF

3 = 96PF

4 = 725C

5 = 725C

6 = P5PH

7 = P5PH

8 = 5CP0 9 = 5CPO

11 = 0000

12 = 7P25

13 = 7P25

14 = 85PA

15 = 85PA

16 = 77F717 = 77F7

18 = H58A

19 = H58A

After the test replace jumpers A 1J 108, AlJ 809, A 2E 101 and A 2E 102.

Table 8-8. CRTC RAM Signature Analysis

Arbiter	PCA: A 1 Main Board
A 1J 108 open, set A 1J809	to T. Tests address
muxes to see if they select	t and pass on AO-A11.
Pulldown A 1R54 (the leg n	earest the edge of the
PC board). Remove jumpe	ers A 2E 101 and A 2E 102.
To disable beeper, place a	jumper from ground on
the A2 board to A2R207 (end nearest board edge).
	A 1J108 open, set A 1J809 muxes to see if they select Pulldown A 1R54 (the leg n PC board). Remove jumpe To disable beeper, place a

SIGNATURE	NORM	
START/STOP	+	A 1U 410 pin 13
QUAL		
CLOCK	+	A 1U 2O 9 pin 32
GROUND		A 1U 2O 9 pin 2O
Vh = 826P		

U408	3 =	7P25	
	4 =	7P 25	
	6 =	2A 1F	
	7 =	2A 1F	
	9 =	A 206	
	10=	A 206	
	12 =	C133	
	13=	C133	

U409	3 =	8P 3U
	4 =	8P3U
	6 =	3319
	7 =	3319
	9 =	7C 47
	10 =	7C 47
	12 =	C25F
	13=	C25F
1410	2	6H 2.1

U410	3 =	5H21
	4 =	5H 2 1
	6 =	19H6
	7 =	19H6
	9 =	HP66
	10 =	HP66
	12 =	U81P
	13 =	U81P

After the test replace jumpers to normal position.

Table 8-9. CRTC RAM Signature Analysis

LOOP:

ī

E

1

CRT RAM

PCA: A1 Main Board

SET UP:

A 1J 108 open, set A 1J 809 to T. Remove jumpers A 2E and A 2E 102. Pull down AIR 54, the leg nearest the edge of the PC board). To disabale beeper, place a jumper from ground on the A 2 board to

A2R207 (end nearest board edge).

SIGNATURE

NORM

START/STOP

+

A 1U410 pin 13

QUAL

CLOCK -

+

A 1U 2O9 pin 32

Vh = 826P

U407 2 = 7A70

3 = C25F

4 = 7C47

5 = 3319

6 = 8P3U

7 = C133

7 - 0100

8 = A2069 = 2A1F

0 - ZK II

10 = 7P25

21 = HP66

22 = 826P (high)

23 = U81P

24 = 19H6

25 = 5H21

26 = 826P (high)

27 = 826P (high)

Table 8-10. CRT Controller Signature Analysis

LOOP:

CRT Controller

PCA: A 1 Main Board

SET UP:

Pull A 1U 304 pin 4 low. A 1U 509 Pin 21 (CCLK) frequency = 614.400 kHz + -100 Hz. To disable beeper, place a jumper from ground on the A2 board to A 2R 207 (end nearest board edge).

SIGNATURE

NORM

START/STOP

+

A 2U 4O 1 pin 2

QUAL

CLOCK

+

A 1U 509 pin 23

Vh = 4106 (+5 V)

U50922 = UUCU

24 = 42UP

25 = OP8A

26 = HF 17

27 = 2U99

28 = 2415

29 = CP73

30 = HF 57

31 = 2U30

32 = 099F

33 = 05A3

Computer Museum

Table 8-11. Memory Decoder Signature Analysis

LOOP:

4

Ē

E

Ä

3

1

1

Memory Decoder

PCA: A2 Memory Board

SET UP:

Pull A 1U304 pin 7 low. To disable beeper, place

a jumper from ground on the A2 board to A2R207 (end

nearest board edge).

SIGNATURE

NORM

START/STOP

+

A 2U 4O1 pin 2

QUAL

CLOCK

+

TP 300

Vh = U973

U101 20 = 1F34

U103 20 = FH93

U104 20 = CAH9

U105 20 = 22CF

U200 20 = 26H0

U201 20 = 4PA6

 $U202\ 20 = 4818$

 $U203\ 20 = 81F4$

U204 20 = 0187

U205 20 = C6U3

U206 1 = C0C1

2 = 63P7

3 = 6C5C

4 = 1F34 ROM enable

5 = 8P39

6 = U973 (high)

7 = 22CF RAM enable

11 = CAH9 RAM enable

12 = FH93 ROM enable

14 = 18H7

15 = 8P39

Table 8-11. Memory Decoder Signature Analysis (cont)

LOOP:

Memory Decoder

PCA: A2 Memory Board

SET UP:

Pull A 1U304 pin 7 low. To disable beeper, place

a jumper from ground on the A2 board to A2R207 (end

nearest board edge).

SIGNATURE

NORM

START/STOP

+

A 2U 4O 1 pin 2

QUAL

CLOCK

+

TP300

Vh = U973

U207 1 = PUAH

2 = 1UCO

3 = P696

5 = 26HO ROM enable

6 = C6U3 ROM enable

7 = 7U8P

9 = 4PA6 ROM enable

10 = 4818 RAM enable

11 = 81F4 RAM enable

12 = 0187 RAM enable

13 = 6C5C

14 = 63P7

15 = 7U8P

U302 1 = 07P6

2 = C1FF

3 = 63P7

4 = 6C5C

5 = 16HP

6 = A66U

12 = P936

U303 9 = 16HP

10 = PUAH

U403 4 = 16HP

5 = A66U

6 = COC1

11 = PUAH

12 = PUAH

13 = A66U

Table 8-12. CRTC RAM Signature Analysis

LOOP: Dual Port RAM PCA: A 1 Main Board
SET UP: Normal operation, wake up menu. To disable beeper,
place a jumper from ground on the A2 board to A2R2O7
(end nearest board edge)

SIGNATURE QUAL

START/STOP + A 1U 509 pin 40

QUAL - A 1U 509 pin 13

CLOCK + A 1U 509 pin 21

Vh = 80F6

₹ .

1

Ì

1

]

15 = 7C24 16 = AH74 17 = 2336 18 = PU98 19 = 63P2 22 = 0000 (low) 23 = 0000 (low)

25 = 179926 = 80F6 (high)

24 = 62C4

27 = 80F6 (high)

Table 8-13. CRTC RAM Signature Analysis

LOOP:

Dual Port RAM

PCA: A 1 Main Board

SET UP:

Normal operation, wake up menu. To disable beeper, pleace a jumper from ground on the A2

board to A 2R 207 (end nearest board edge).

SIGNATURE

NORM

START/STOP

A 1U509 pin 40

QUAL

CLOCK

A 1U 509 pin 21

Vh = FP96

U408 1 = 0000 (low)

2 = 0000

4 = 0000

5 = 458H

7 = 458H

9 = 3F84

11 = 3F84

12 = 597P

14 = 597P

U409 1 = 0000 (low)

2 = 7605

4 = 7605

5 = 3543

7 = 3543

9 = C28P

11 = C28P

12 = 3CUF

14 = 3CUF

U410 1 = 0000 (low)

2 = 2FOC

4 = 2FOC

5 = P049

7 = P049

9 = 106H

11 = 106H

12 = 0000 (low)

14 = 0000 (low)

Table 8-14. CRT RAM Signature Analysis

LOOP:

CRTC RAM

PCA: A1 Main Board

SET UP:

Normal operation, wake up menu. To disable the beeper,

place a jumper from ground on the A2 board to A2R2O7

(the end nearest the board edge).

+

SIGNATURE QUAL

START/STOP

A 1U 509 pin 40

QUAL

- A 1U 509 pin 13

CLOCK

A 1U 509 pin 21

Vh = 80F6

U508 1 = 0000 (low)

2 = C84U

3 = 63P2

4 = 7F05

5 = PU98

6 = 3FPH

7 = 2336

8 = 7C24

9 = AH74

11 = AH74

12 = 7C24

13 = 2336

14 = 3FPH

15 = PU98

16 = 7FO5

17 = 63P2

18 = C84U

19 = 0000 (low)

Table 8-14. CRTC RAM Signature Analysis (cont)

LOOP:

CRTC RAM

PCA: A1 Main Board

SET UP:

Normal operation, wake up menu. To disable

beeper, place a jumper from ground on the A2 board

to A2R207 (the end nearest the board edge).

SIGNATURE

QUAL

START/STOP

+

A 1U 509 pin 40

QUAL

-

A1U509 pin 13

CLOCK

+

A 1U 509 pin 21

Vh = 80F6

U607 1 = UHF2

2 = 9FF9

3 = AF72

4 = HPF5

5 = 4FF0

6 = 7UF1

7 = 8042

8 = 0000

0 - 0000

9 = C84U

10 = 7F05

11 = 3FPH

13 = 7C24 14 = AH74

15 = 2336

16 = PU98

17 = 63P2

19 = 0000

20 = 80F6 (high)

21 = 0000

22 = 62C4

23 = 1799

8-16. Set up procedure using Self Test.

- 1. Turn on HP 4951A.
- 2. Press MORE.
- 3. Select <SELF TEST>.
- 4. Select <CRT TSTS>.
- 5. Selct < CHAR SET 2>.using Self Test.

8-17. Set up procedure using Self Test

- 1. Turn on HP 4951A.
- 2. Press MORE.
- 3. Select <SELF TEST>.
- 4. Select <CRT TSTS>.
- 5. Select <TEST PTRN>.

Service

Table 8-15. CRT Controller Signature Analysis

LOOP: CRT Controller PCA: A 1 Main Board

SET UP: Follow procedure in paragraph 8-16.

SIGNATURE NORM

START/STOP + A 1U509 pin 40

QUAL

CLOCK + A 1U 509 pin 21

Vh = FP96

U509 4 = 458H (MA0)

5 = 3F84 (MA1)

6 = 597P (MA2)

7 = 7605 (MA3)

8 = 3543 (MA4)

9 = C28P (MA5)

10 = 3CUF (MA6)

11 = 2FOC (MA7)

12 = P049 (MA8)

13 = 106H (MA9)

14 = 0000 (MA 10)

18 = 04F5(DE)

35 = F278 (CR3)

36 = 2ACA (R2)

37 = P398 (R1)

38 = 51PF(R0)

39 = 3FA9 (HS)

40 = H169 (VS)

Table 8-16. CRT Controller Signature Analysis

LOOP: CRT Controller PCA: A1 Main Board

SET UP: Follow procedure in paragraph 8-16.

QUAL SIGNATURE

> START/STOP + A 1U 509 pin 40 QUAL + A 1U509 PIN 18 CLOCK A 1U509 pin 21

Vh = 879F

3...

3

3

3

U709 2 = 09UH

3 = C556

4 = 54F7

5 = 024C

6 = 22PU

7 = HP87

8 = A713

9 = 7P95

11 = 879F

12 = 6627

13 = 1857

14 = 7601

15 = P45C

16 = AH21

17 = 0000

18 = 879F

19 = FPP6

U710 2 = UO57

3 = C556

4 = 54F7

5 = 2234

6 = 1UFP

7 = HP89

8 = A713

9 = 3444

11 = 0000

12 = 0F26

13 = 1857

 $14 = 76 \cup 1$

15 = HA2C

17 = 0000

18 = 879F

Table 8-17. CRT Controller Signature Analysis

LOOP: CRT Controller PCA: A 1 Main Board SET UP: Follow procedure in paragraph 8-16. SIGNATURE QUAL START/STOP A 1U 509 pin 40 + QUAL A 1U 509 pin 18 CLOCK A 1U509 pin 21 Vh = 879FU705 2 = 00003 = 7P954 = 22PU5 = 024C6 = 09UH7 = 22888 = 3U4F9 = A56910 = CCHF 11 = AC4012 = 281H13 = FC1215 = 3F2216 = 6PC117 = AA9318 = 85PF19 = H42121 = AH2122 = 000023 = FPP624 = P456U806 2 = AC403 = 281H4 = FC125 = 3F227 = 879F10 = 6PC111 = AA9312 = 85PF

13 = H421 14 = H421 15 = 0000

Table 8-18. CRT Controller Signature Analysis

Ī

1

i

1

3

1

LOOP: CRT Controller PCA: A1 Main Board Follow procedure in paragraph 8-17. SET UP: SIGNATURE QUAL START/STOP + A 1U 509 pin 40 QUAL AIU 509 pin 18 CLOCK A 1U 509 pin 21 Vh = 879FU905 1 = IFC0 2 = 22883 = 3U4F4 = A5695 = 3FHO9 = CC4F13 = 3FHOU906 1 = U057 2 = IFCO3 = 7F4H4 = 22345 = A7386 = 9U819 = IUFP11 = 2H9H (change qual to -) 13 = A524U907 1 = 22882 = 3U4F3 = A7384 = 7F4H5 = 9U81

> 6 = 64509 = 6450

Table 8-19. CRT Controller Signature Analysis

LOOP:

CRT Controller

PCA: A 1 Main Board

SET UP:

Follow procedure in Paragraph 8-P15. To disable beeper, place a ground from the A2 board to A2R207

(the end nearest the board edge).

SIGNATURE

QUAL

START/STOP

-

A 1U509 pin 40

QUAL CLOCK

.

A 1U509 pin 13

+

A 1U509 pin 3

Vh = 0291

U904 2 = H499

5 = F72U

6 = F5CP

8 = H2FA

9 = H05C

U807 2 = 29A9

3 = 46UP

5 = 4F5H

8 = H05C

10 = H2FA

11 = F72U

Table 8-20. Deflection Signature Analysis

LOOP:

ij

E

Ī

3

7

3

1

1

į

1

Deflection

PCA: A1 Main Board

SET UP:

Normal operation, wake up menu. To disable beeper, place a jumper from ground on the A2 board to A2R2O7 (the end nearest the board edge).

SIGNATURE

NORM

START/STOP

L .

A 1U 509 pin 40

QUAL

CLOCK

_

A 1U509 pin 21

Vh = FP96

TP804

= FP96 (PU) (high)

TP803 = 6838

U503 2 = H169

10 = 3FA9

11 = FP96 (high)

Table 8-20. Deflection Signature Analysis (cont)

LOOP:

Deflection

PCA: A 1 Main Board

SET UP:

Nornal operaion, wake up menu. To disable

beeper, place a jumper from gound on the A2 board

to A2R207 (end nearest board edge).

SIGNATURE

QUAL

START/STOP

т

A 1U 509 Pin 40 A 1U 509 Pin 13

QUAL CLOCK

+

ALU904 PIN 3

VH = FP96

U803 4 = AHC1

5 = F72U

6 = H05C

11 = FSCP

13 = 707C

Table 8-21. DLC Signature Analysis

LOOP:

ì

*

ī

į

1

Ą

Ī

DLC

PCA A1 Main Board

SET UP:

Self Test menu, do not connect an Interface Pod.

Pull A 1U304 pins 3 and 4 low.

To disable the beeper, place a jumper from ground on the A2 board to A2R207 (end nearest board edge).

SIGNATURE

QUAL

START/STOP

+/-

A 2U 4O 1 pin 2

QUAL

+

A 1U205 pin 32 (D/C)

CLOCK

A 1U 2O5 pin 36 (RD)

Vh = 3696

U205 1 = P742

2 = 43F2

3 = 9PUF

4 = P2P5

5 = 3696 (high)

8 = 3696 (high)

15 = 3696 (high)

19 = 0000 (low)

25 = 3696 (high)

33 = 3696

34 = 0000

35 = 3696

37 = 2UA4

38 = UHH3

39 = 7FP6

40 = 8652

Table 8-23. Tic Clock Signature Analysis

LOOP:

RST B

PCA: A2 Memory Board

SET UP:

Pull A 1U304 pin 3 low.

To disable the beeper, place a jumper from ground

on the A2 board to A2R2O7 (the end nearest the board edge).

SIGNATURE

NORM

START/STOP GROUND A 2U 4O 1 pin 2 A 2U 3OO pin 2O

-

A 2U 300 pin 9

Vh = A803

U402 = 0000 (low)

CLOCK

3 = 45C5

5 = 0000 (low)

6 = A803 (high)

9 = A803 (high)

10 = 16PP

11 = 0000 (low)

13 = A803 (high)

U500 1 = 0.4P8

2 = UUP5

3 = HHHA

4 = 228F

5 = AF58

10 = A803 (high)

13 = 0000 (low)

8-18. A 2 Memory Board Troubleshooting Procedure

Table 8-22. Tic Clock Signature Analysis

LOOP: Tic Clock

PCA: A 2 Memory Board

SET UP:

Wake up menu. To disable. To disable beeper, place a jumper from ground on the A2 board to S2R207 (the end nearest the board edge).

SIGNATURE

NORM

START/STOP

A 2U 4O 4 pin 9

QUAL

CLOCK

TP 300

Vh = 48CF

U404 1 = 0A3C

3 = 513C

4 = CH89

5 = 745P

6 = 8PA4

10 = 7103

11 = C2A1

8-19. SIGNATURE ANALYSIS FOR A3 TAPE CONTROLLER, OPTION 001.

Before performing any Signature Analysis on the A3 Tape Controller Board, read the A3E304 switch position and A3E208 function descriptions.

NOTE: Make sure there is no tape in tape drive assembly.

```
A 3E 304

Switch 1 closed = external ROM open = 8048 internal ROM

Switch 2 closed = normal open = no ops

Switch 3 closed = run motor at 40 ips open = normal

Switch 4 closed = run motor at 40 ips open = normal

A 3E 208

A \ system bus acknowledge

B /

B \ stand alone bus acknowledge

C /

A 3E 105

A \ 27C 32 4K EPROM

B \ 27C 16 2K EPROM

C /
```

Table 8-24. Microprocessor No Ops

LOOP:

Microprocessor No Op

PCA: A3 Tape Controller

SET UP:

Wake up menu.

S 304 switch 1 closed and 2,3, and 4 open. To disable beeper, place a jumper from ground on the A 2 board

to A2R207 (the end nearest the board edge).

SIGNATURE

NORM

START/STOP

+

A 3U 106 pin 23

QUAL

CLOCK

~

A 3U 106 pin 11

GND

A 3U 106 pin 20

Vh = 7A70

U106 1 = 7A70

3 = 0000

4 = 7A70 (high)

5 = 7A70 (high)

6 = 0000 (low)

7 = 7A70 (high)

12 = H62U

13 = C21A

14 = HA07

15 = HOAA

16 = P030

17 = 4442

18 = 4U2A

19 = 0772

21 = 9635

22 = 1734

23 = U424

24 = 0000

Table 8-25. Microprocessor No Ops

LOOP:

Microprocessor No Ops

PCA: A3 Tape Controller

SET UP:

Wake up menu.

Switch 1 of A3E304 is closed and 2,3, and 4 are open. To disable beeper, place a jumper from ground on the

A2 board to A2R207 (end nearest board edge).

SIGNATURE

NORM

START/STOP

A3U106 pin 23

QUAL

CLOCK

A 3U 106 pin 11

GND

A 3U 106 pin 20

Vh = 7A70

U105 2 = AF5U

3 = H62U

4 = C21A

5 = 1P45

6 = HA07

7 = AA4C

9 = 0000

10 = 2U1H

11 = HOAA

12 = 3750

13 = P030

14 = 4442

15 = 6569

U205 2 = POHH

3 = 4U2A

4 = 0772

5 = F4U1

6 = 9635

7 = 8F52

9 = 000010 = 4FH2

11 = 1734

12 = UA12

13 = U424

14 = 0000

15 = 0000 (low)

Table 8-26. I/O Timer Signature Analysis

LOOP:

1/O Timer

PCA: A3 Tape Controller

SET UP:

Switch A3E304 set switch 3 open, and 1, 2, and 4 closed. To disable the beeper, place a jumper from ground on the A2 board to A2R207 (the end nearest the board edge).

NOTE:

Use ground indicated below, otherwise signatures

will be unstable.

SIGNATURE

NORM

START/STOP

+/-

A3U104 pin 10

QUAL CLOCK

A3U104 pin 3

GND

A 3U 1O4 pin 2O

Vh ≈ 99FA

 $U104 4 = 0000 ext{ (low)}$

7 = 7347

8 = 99FA (high)

11 = 0H45

12 = 7466

13 = 0425

14 = 7ACF

15 = P72U

16 = 7487

17 = POPU

18 = 9031

19 = 7347

19 = 734721 = P672

22 = 7UC8

23 = P672

24 = 7UC8

25 = P672

26 = 7UC8

27 = P672

28 = 7UC8

36 = 99FA

8-45

Table 8-27. State Machine/Bit Timer Signature Analysis

LOOP:

State Machine/Bit Timer

PCA: A3 Tape Controller

SET UP:

Close switches 1, 2, and 3 of A 3E 304, open switch 4

To disable the beeper, place a jumper from ground on the

A2 board to A2R207 (the end nearest the board edge).

SIGNATURE

QUAL

START/STOP

-/+

A 3U 106 pin 31

QUAL

+

A 3U 106 pin 39

CLOCK GND A 3U 106 pin 1 A 3U 106 pin 20

Vh = 2016

U305 3 = 5818

4 = 2016

5 = 1HF7

6 = 2016 (high)

7 = 2016 (high)

9 = 0000

10 = 0000

11 = 0000

Table 28. State Machine/Bit Timer Signature Analysis

LOOP:

State Machine/Bit Timer (RD) PCA: A3 Tape Controller

SET UP:

Close switches 1, 2, and 3 of A3E304, openswitch 4.

Pull U300 pins 1 and 16 to +5V.

To disable the beeper, place a jumper from gound on the A2 board to A2R2O7 (the end nearest the board edge).

SIGNATURE

QUAL

START/STOP	+	A 3U 106 pin 31
QUAL	+	A 3U 106 pin 39
CLOCK	+	A 3U 106 pin 1

Vh = F013

1 .

U104 1 = 0000

2 = 7 UP2

6 = F013 (high)

9 = F013 (high)

21 = 46C5

22 = 7C4U

23 = 6AUH

24 = 8UPP

25 = HHCF

26 = 8U8H

27 = P402

28 = CUPP

39 = F013

U302 1 = F013

2 = CUU1

3 = 30044 = F013 (high)

5 = 0000

8 = CUU1

9 = 0000 (low)

10 = CUU1

11 = 3004

13 = CUU1

14 = 7UP2

15 = 8005

16 = 7UP2

17 = F013

Service

Table 29. State Machine/Bit Timer Signature Analysis

LOOP: State Machine/Bit Timer (RD) PCA: A3 Tape Controller SET UP: Close switches 1, 2, and 3 of A3E304, open switch 4.

Pull U300 pins I and 16 to +5V.

To disable the beeper, place a jumper from ground on the A2 board to A2R207 (the end nearest the board edge).

SIGNATURE QUAL

START/STOP + A3U106 pin 31

QUAL + A3U106 pin 39

CLOCK + A3U106 pin 1

Vh = F013

U301 2 = 0000 (low)

5 = 0000

6 = 40P6

9 = 0000

12 = CUU1

15 = 3004

16 = CUU1

19 = F013

U303 1 = CUPP

2 = P402

11 = F013 (high)

13 = 0000

15 = 0000 (low)

16 = 46C5

17 = 7C4U

18 = 6AUH

19 = 8UPP

20 = HHCF

21 = 8U8H

22 = P402

23 = CUPP

Table 8-30. State Machine/Bit Timer Signature Analysis

PCA: A3 Tape Controller LOOP: State Machine/Bit Timer SET UP: Close switches 1, 2, and 3 of A3E3O4, open switch 4. To disable the beeper, place a jumper from ground on

the A2 board to A2R207 (the end nearest the board edge).

SIGNATURE QUAL A 3U 106 pin 31 START/STOP + QUAL A 3U 106 pin 39 CLOCK + A3U106 pin 1

Vh = 2016

U102 1 = 1HF72 = 26483 = 7CCU4 = 7P185 = 4C196 = C8PF8 = 88HP9 = 718710 = 611P11 = 71H9

13 = 963214 = UF3115 = U77P

16 = 2FAC19 = 2016 (high)

23 = OU5P

U300 2 = 88HP

3 = 71874 = 611P

5 = 308U

6 = C8PF

7 = 71H9

8 = 9632

9 = 4C19

12 = 7P18

13 = UF31

14 = U77P

15 = 7CCU

16 = 264817 = 2FAC

18 = 985H

19 = OU5P

LOOP:

SET UP:

Table 8-31. State Machine/Bit Timer Signature Analysis

Close switches 1, 2, and 4 of A3E304, open switch 3.

PCA: A3 Tape Controller

A 3U 3O 2 pin 8

A 3U 3O 2 pin 5

A3U104 pin 3

Pull U300 pins

To disable the beeper, place a jumper from ground on the A2 board to A2R207 (the end nearest the board edge). SIGNATURE QUAL START/STOP QUAL CLOCK Vh = A310U302 1 = 3F1P 2 = POH93 = 4H164 = 0000 (low)7 = F4UP9 = 268110 = 3P1H11 = 0000 (low)13 = 0000 (low)14 = 1A9U15 = 9A2F16 = 248217 = 9HOHU301 2 = 93405 = 9UOP6 = 0000 (low)9 = 0000 (low)12 = 7UH715 = 4H1616 = POH9 19 = 3F1P U303 1 = A310 (high)2 = A310 (high)11 = 0000 (low)13 = 0000 (low)15 = 9340

16 thru 23 = A310 (high)

Shift Register (WR)

1 and 16 to +5V.

Table 8-32. DMA Signature Analysis

LOOP:

1

ī

ī

7

1

1

DMA

PCA: A3 Tape Controller

SET UP:

Close switches 1, 2, 3, and 4 of A 3E 304.

To disable the beeper, place a jumper from ground on the A2 board to A2R207 (the end nearest the board edge).

NOTE:

Wait approximately 15 seconds for start/stop to toggle,

this gives Vh time to set the correct signature.

SIGNATURE

QUAL

START/STOP QUAL +/-

A3U106 pin 34

CLOCK

+

A 3U 106 pin 33 A 3U 106 pin 1

Vh = 03U9

U307 2 = 03U9

3 = 0000

4 = 03U9

5 = 03U9

6 = 0000

8 = 0309

10 = 0000 (high)

11 = 03U9

12 = 0000

13 = 03U9

U407 3 = 0000

4 = 03U9

5 = 0309

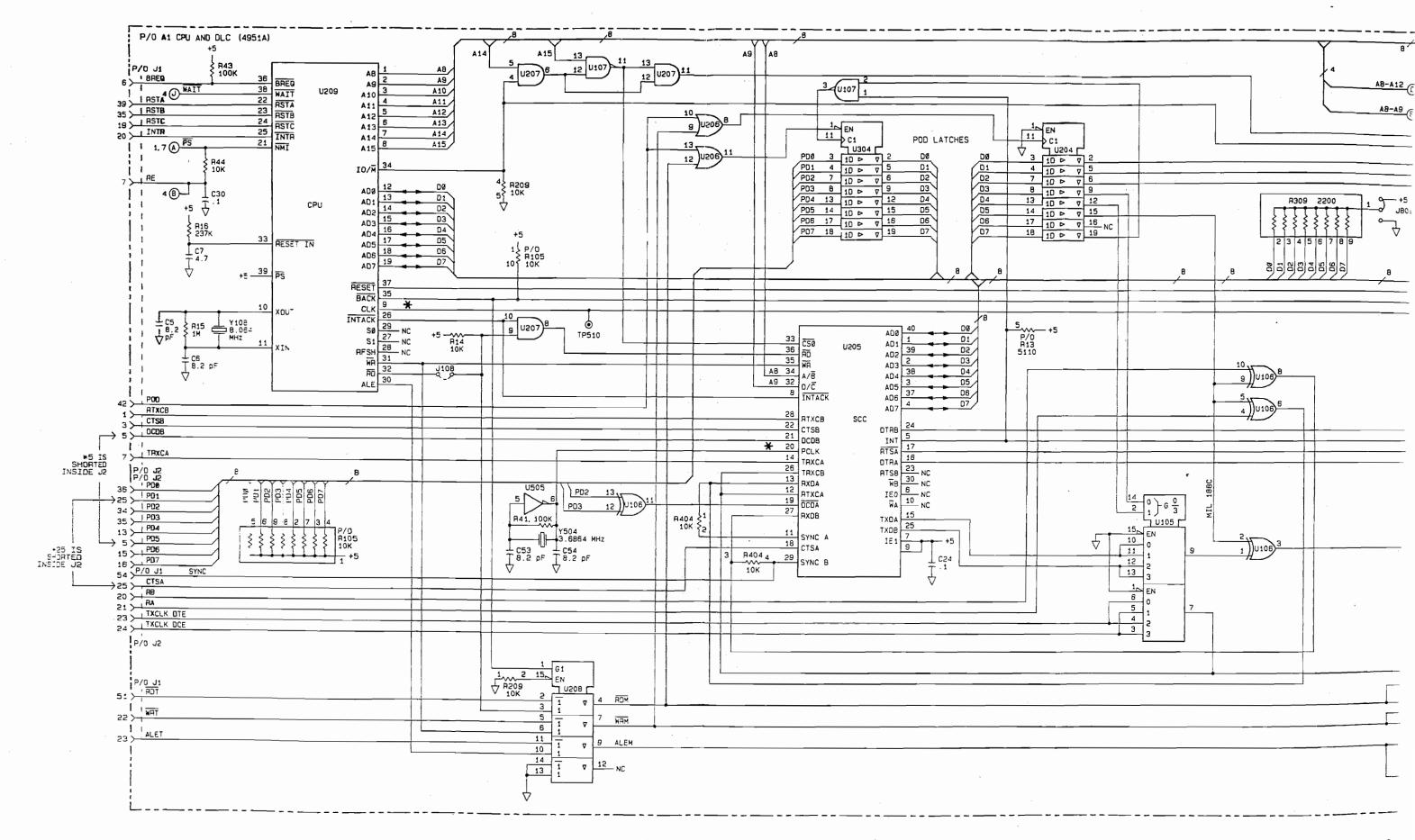
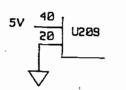
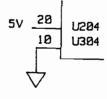
6 = 0000

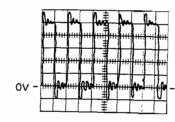
8 = 0309

10 = 0309

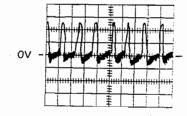
11 = C3U9

13 = 0000

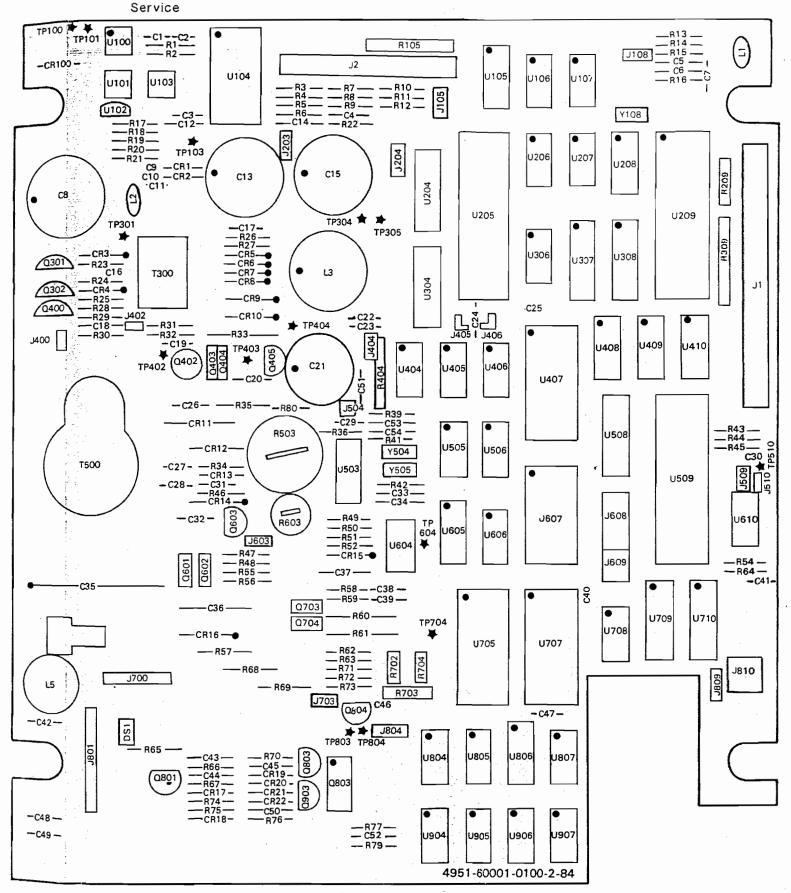





Figure 8-6. A1 CPU and DLC Schema

4951 - 60001 - 5102 - 3 - 22 - 84



CPU CLOCKS


U205 pin 20, P Clock
.1 µsec/Div
1 V/Div, DC coupled

U209 pin 9, Clock 50 µsec/Div .1 V/Div, DC coupled

HP 4951A Service

4.4

A1 Main Board Component Locator

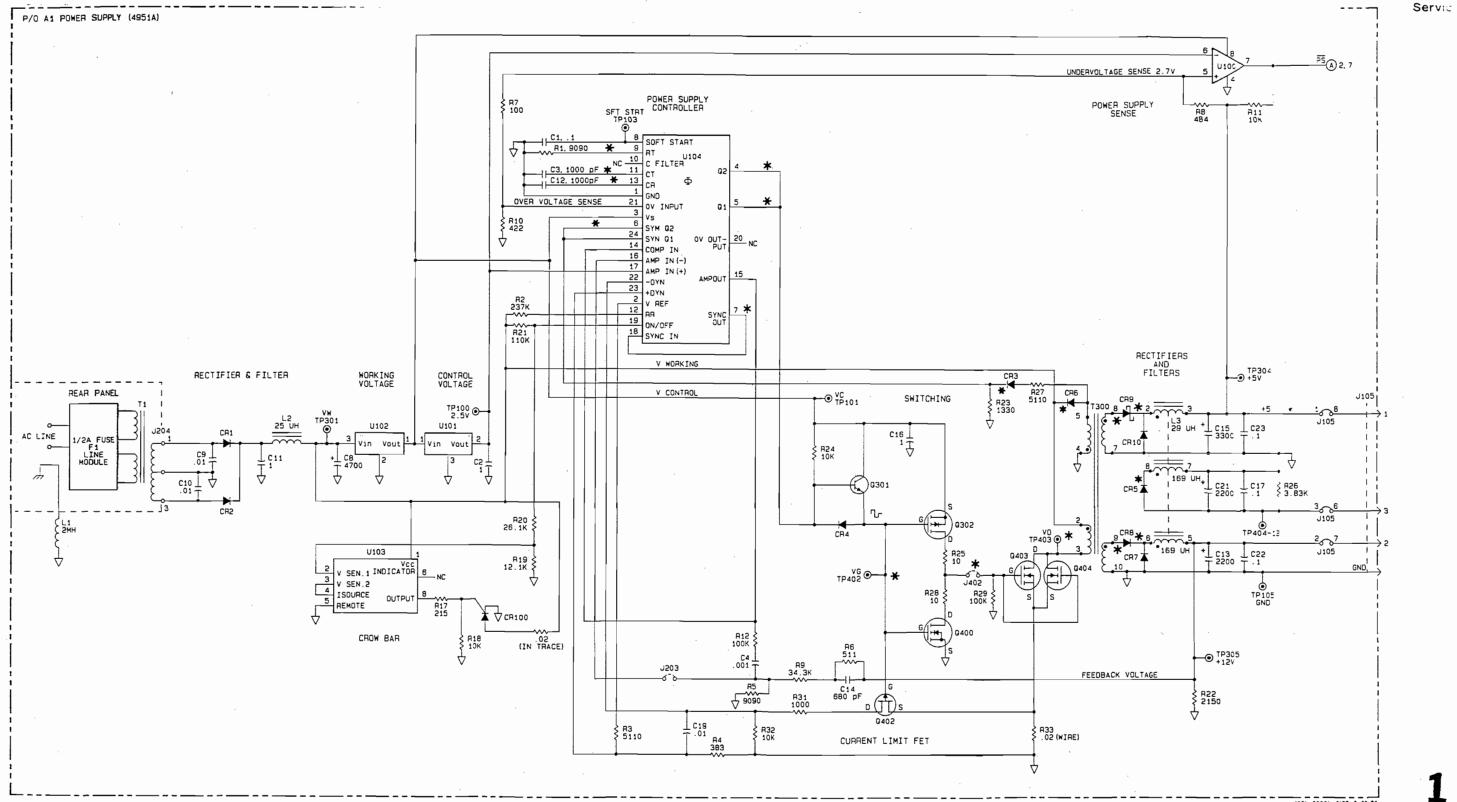


Figure 8-5. A1 Power Supply Schemat

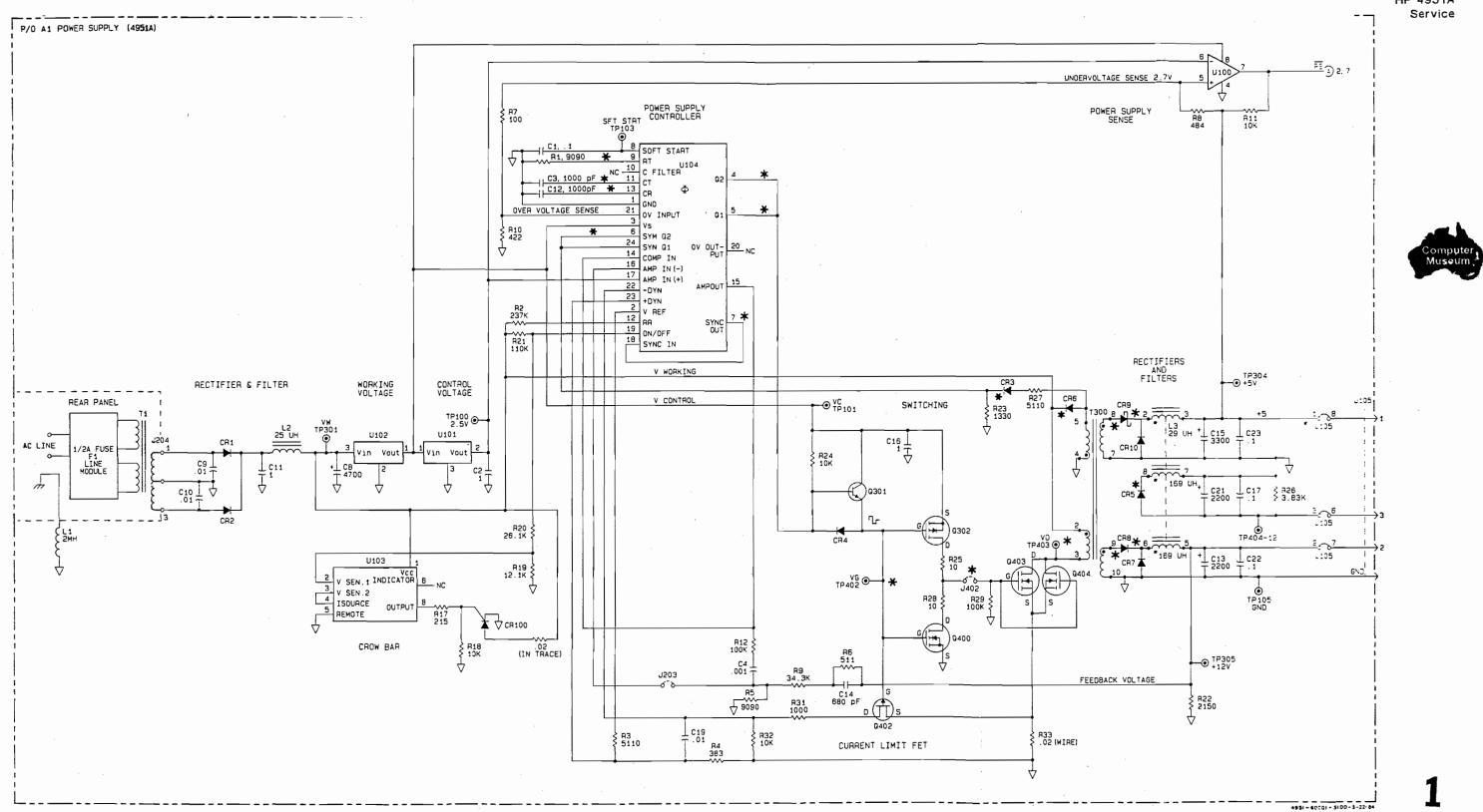
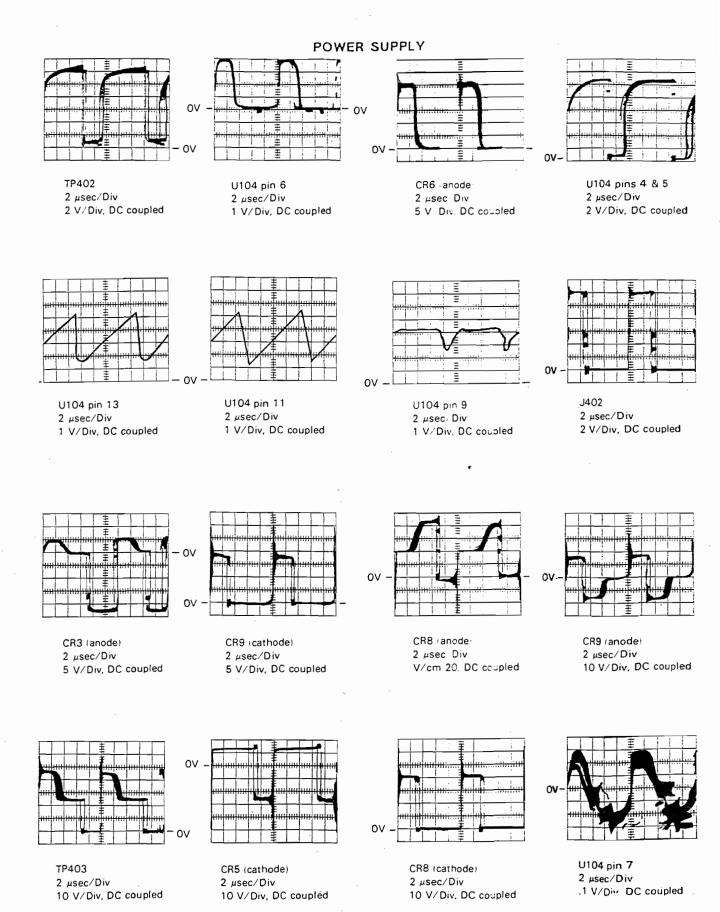



Figure 8-5. At Power Supply Schematic

HP 4951A Service

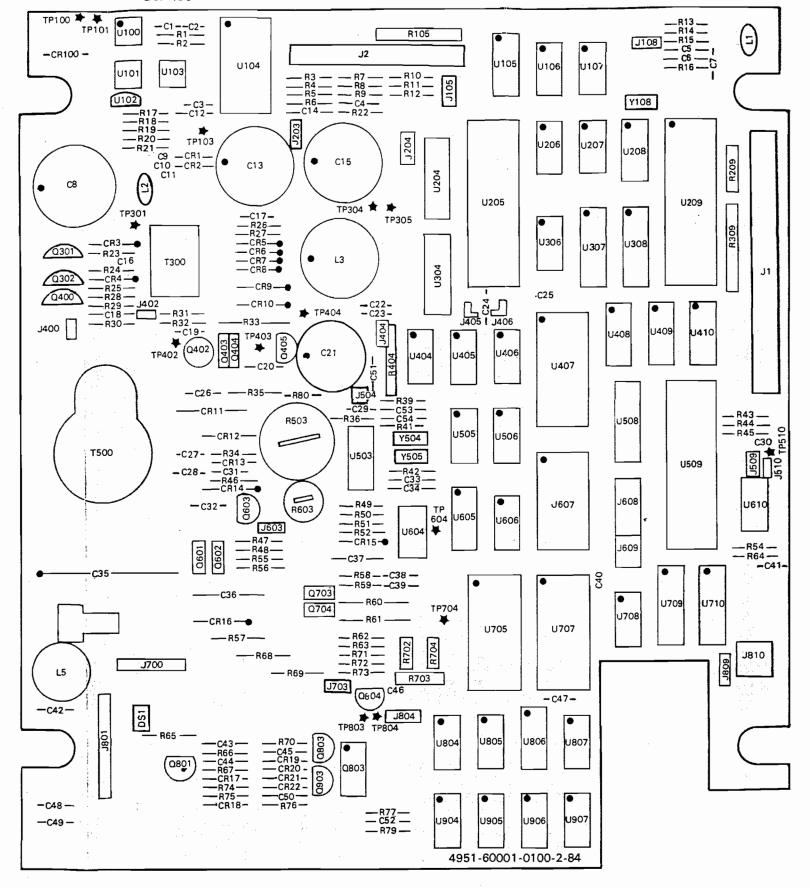
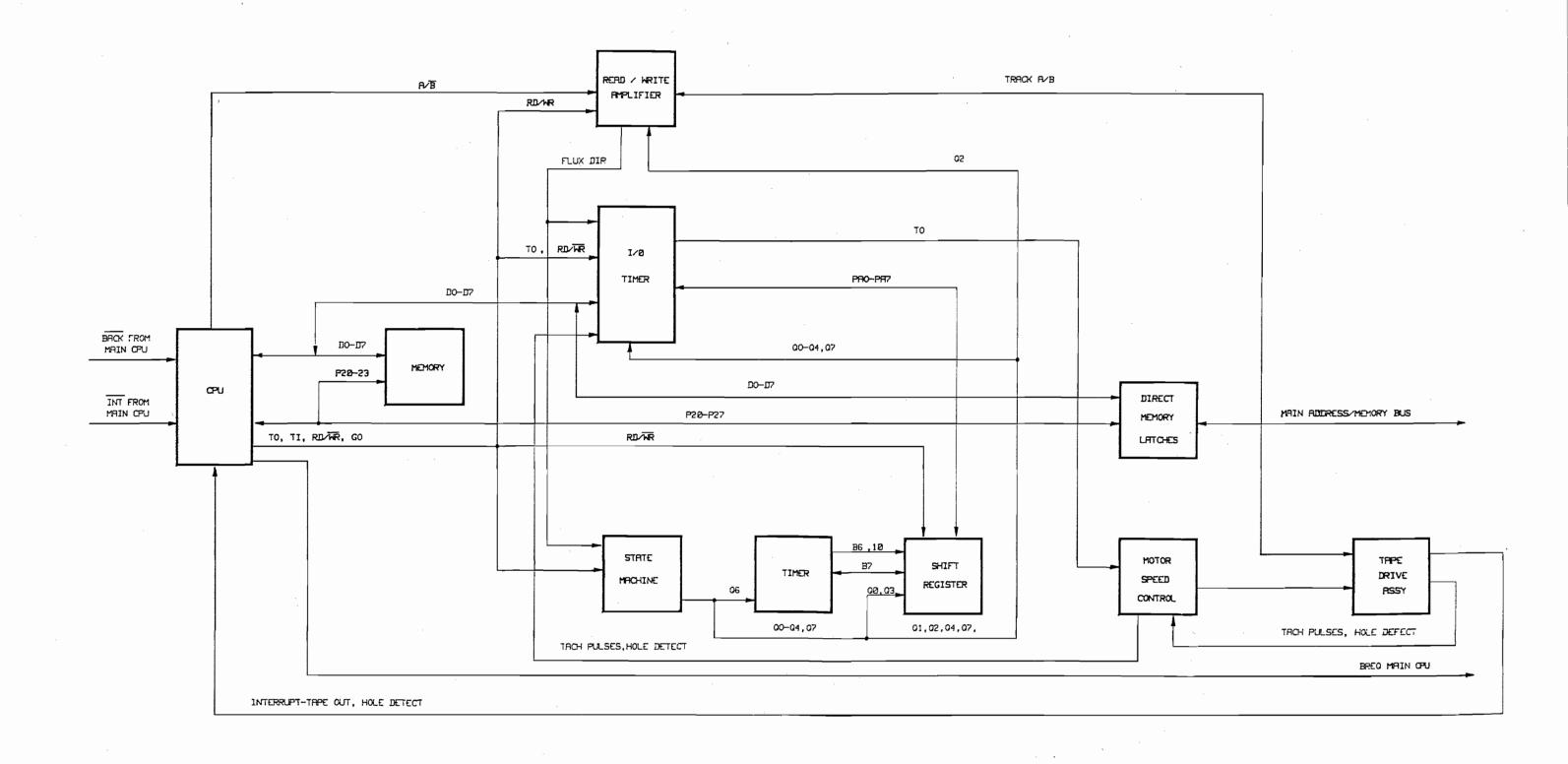



Figure 8-4. At Main Board Component Locator

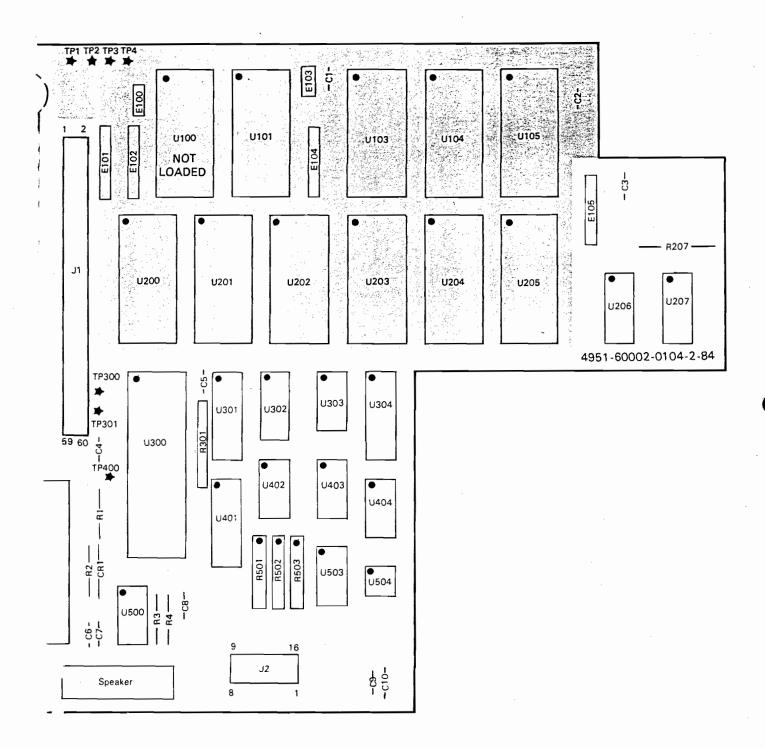
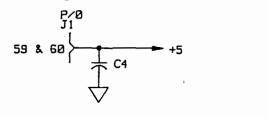
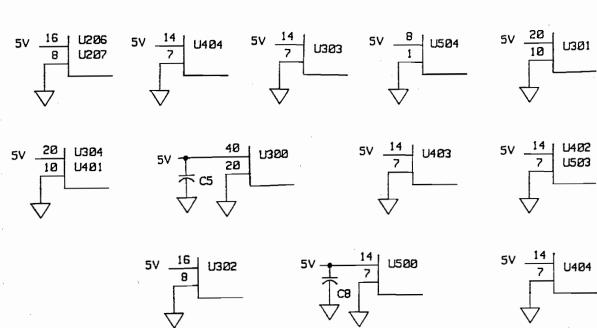
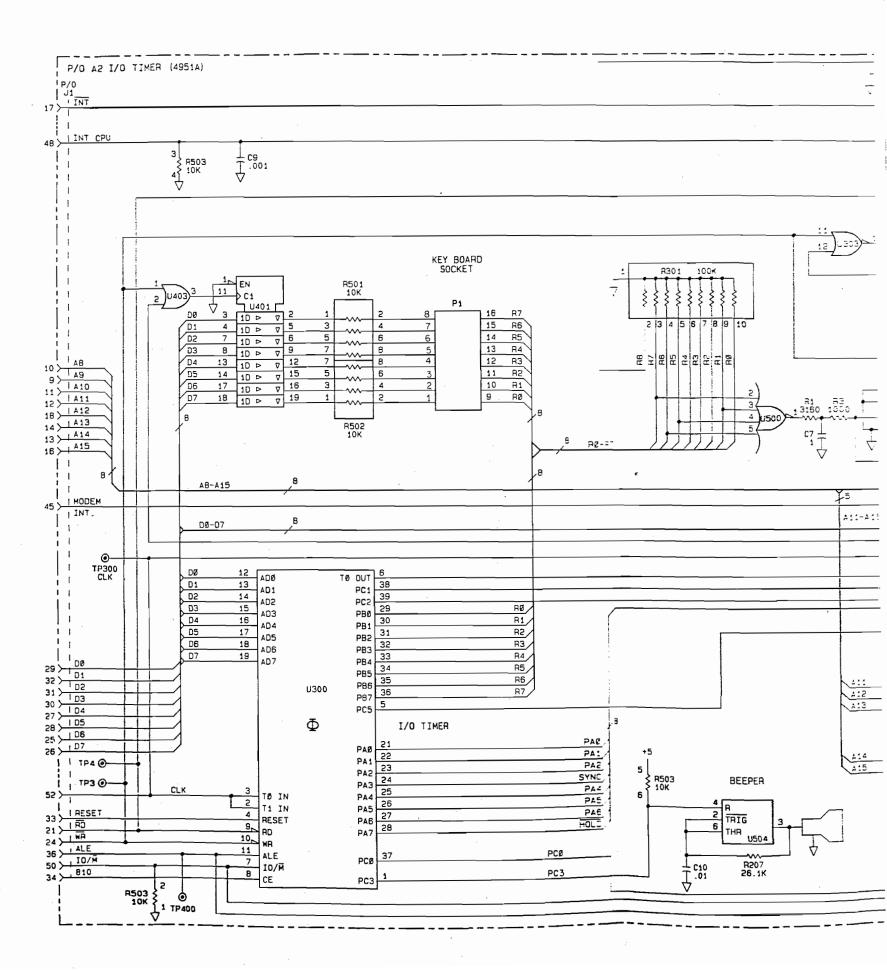





Figure 8-7. A2 Memory Board Component Locator

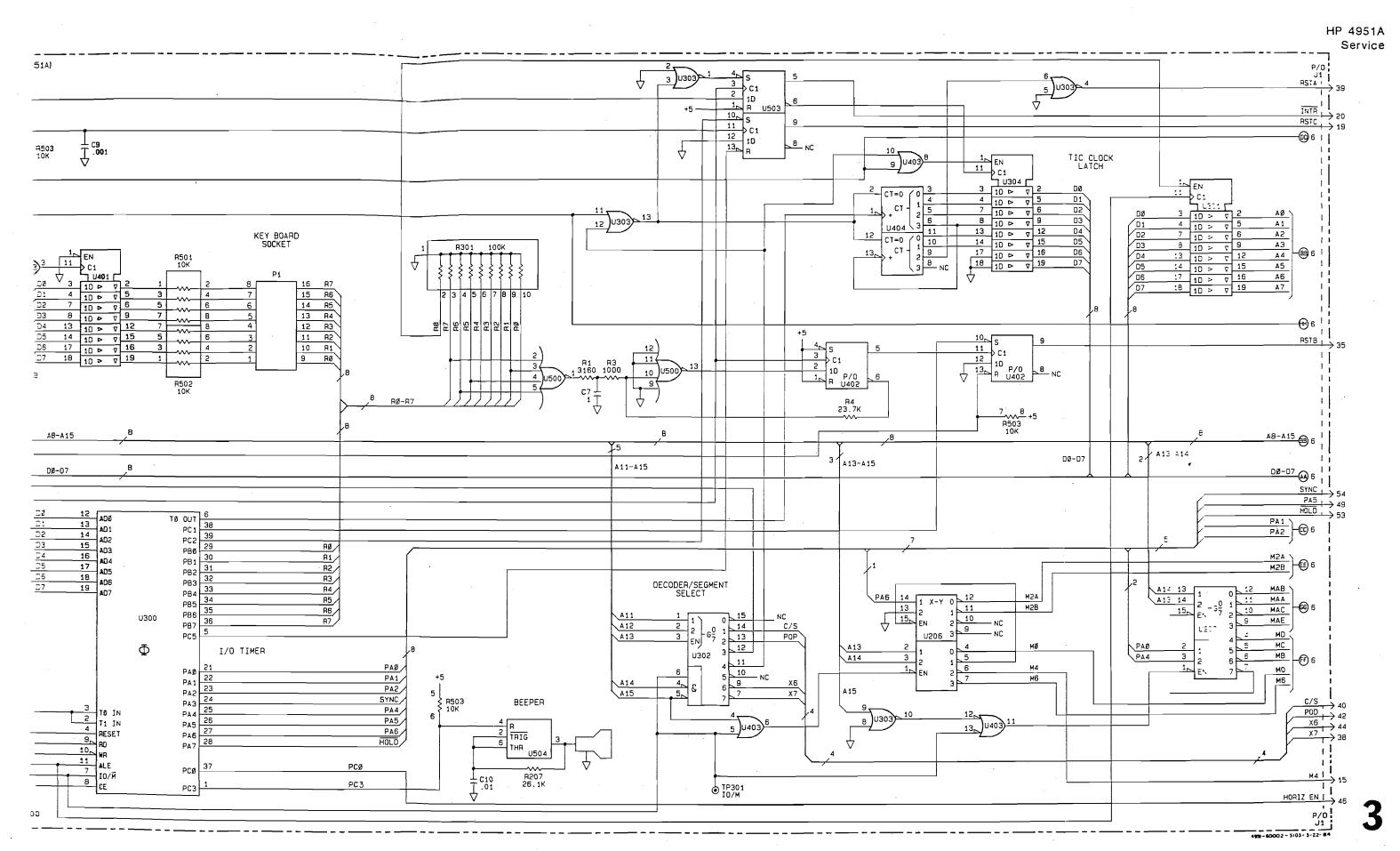
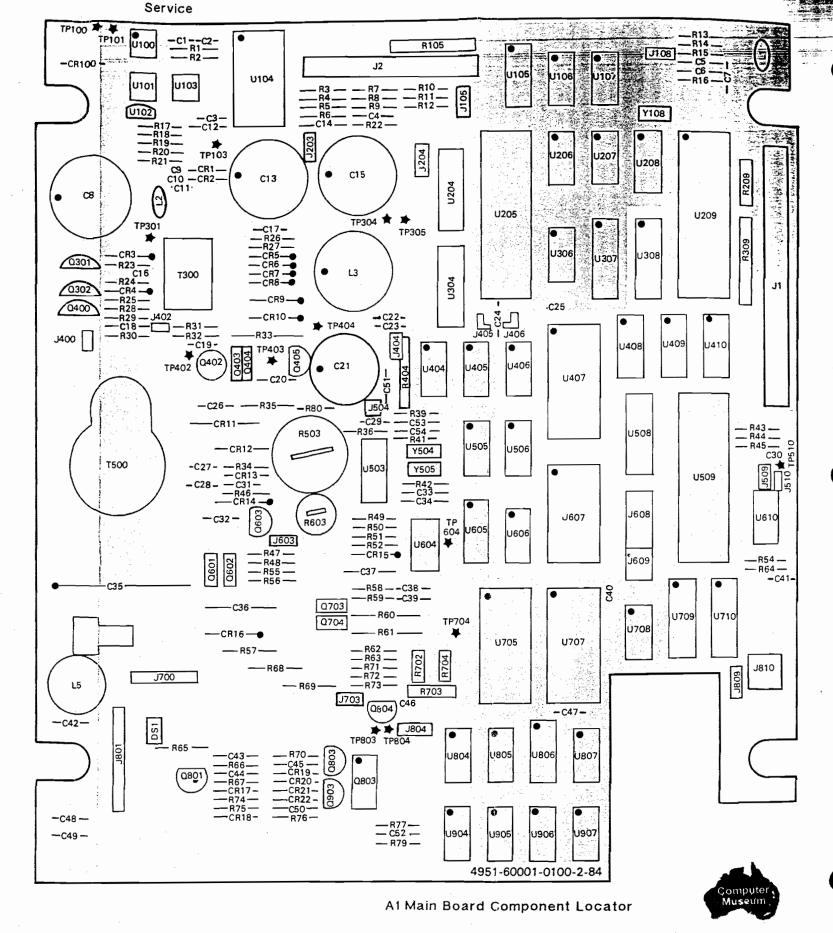
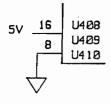
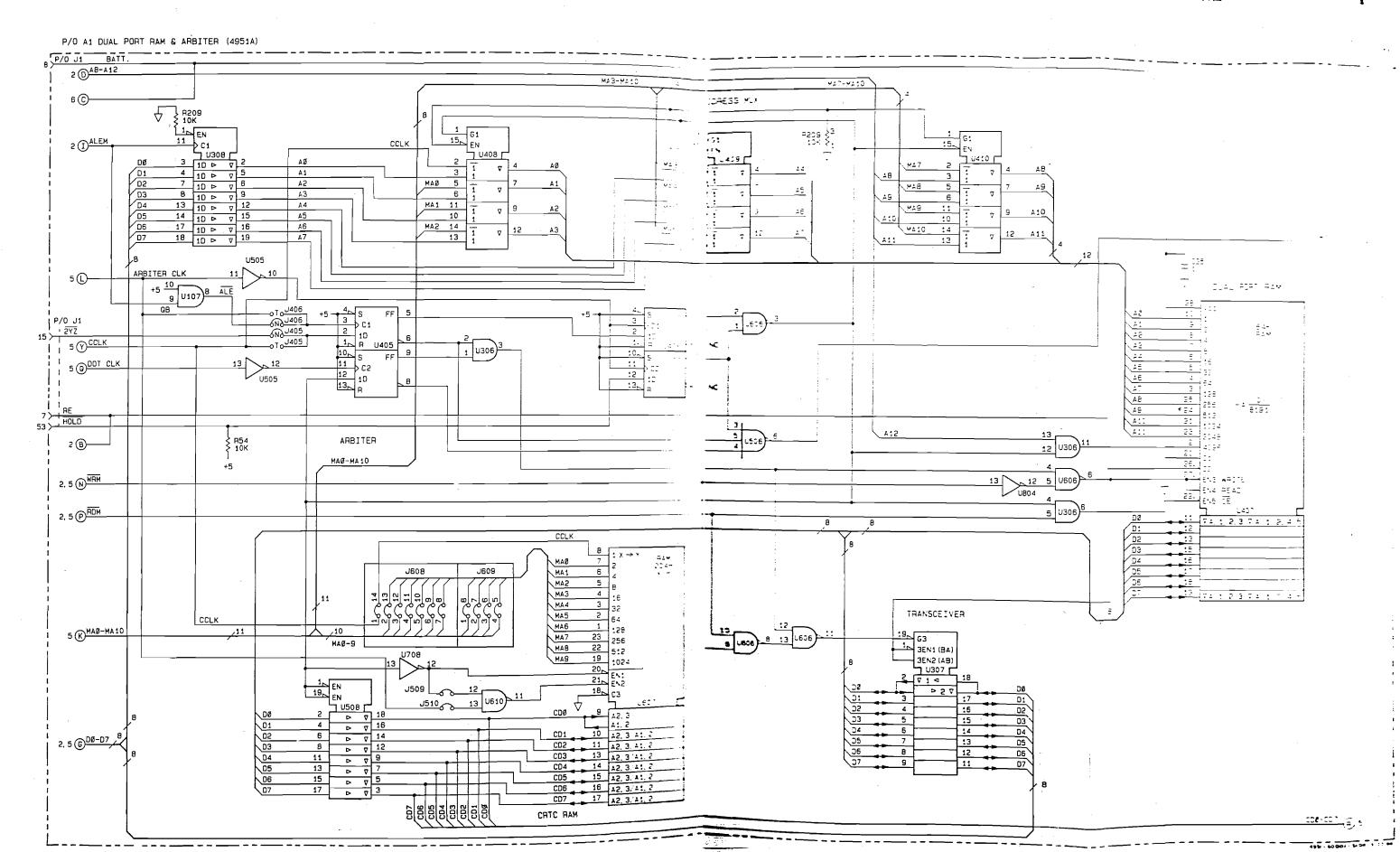
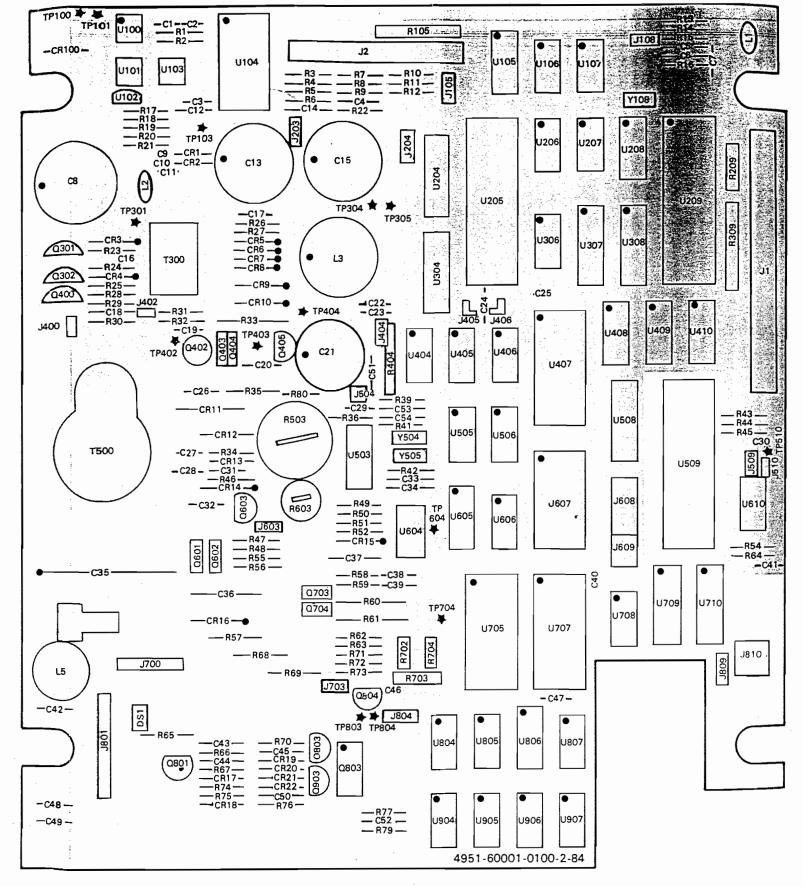
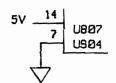
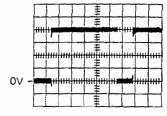






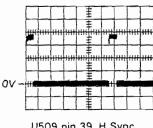
Figure 8-8. A2 I/O Timer Schematic

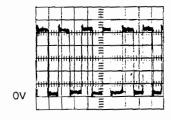


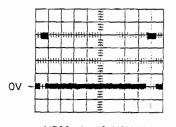




A1 Main Board Component Locator




CRTC CONTROLLER


U509 pin 18, Display Enable 10 μsec/Div 1 V/Div, DC coupled

U509 pin 39, H Sync 10 µsec/Div 1 V/Div, DC coupled

U509 pin 21, Character Clock 1 μsec/Div 1 V/Div, DC coupled

U509 pin 40 VSYNC 2 msec/Div 1 V/Div, DC coupled

5V 24

57

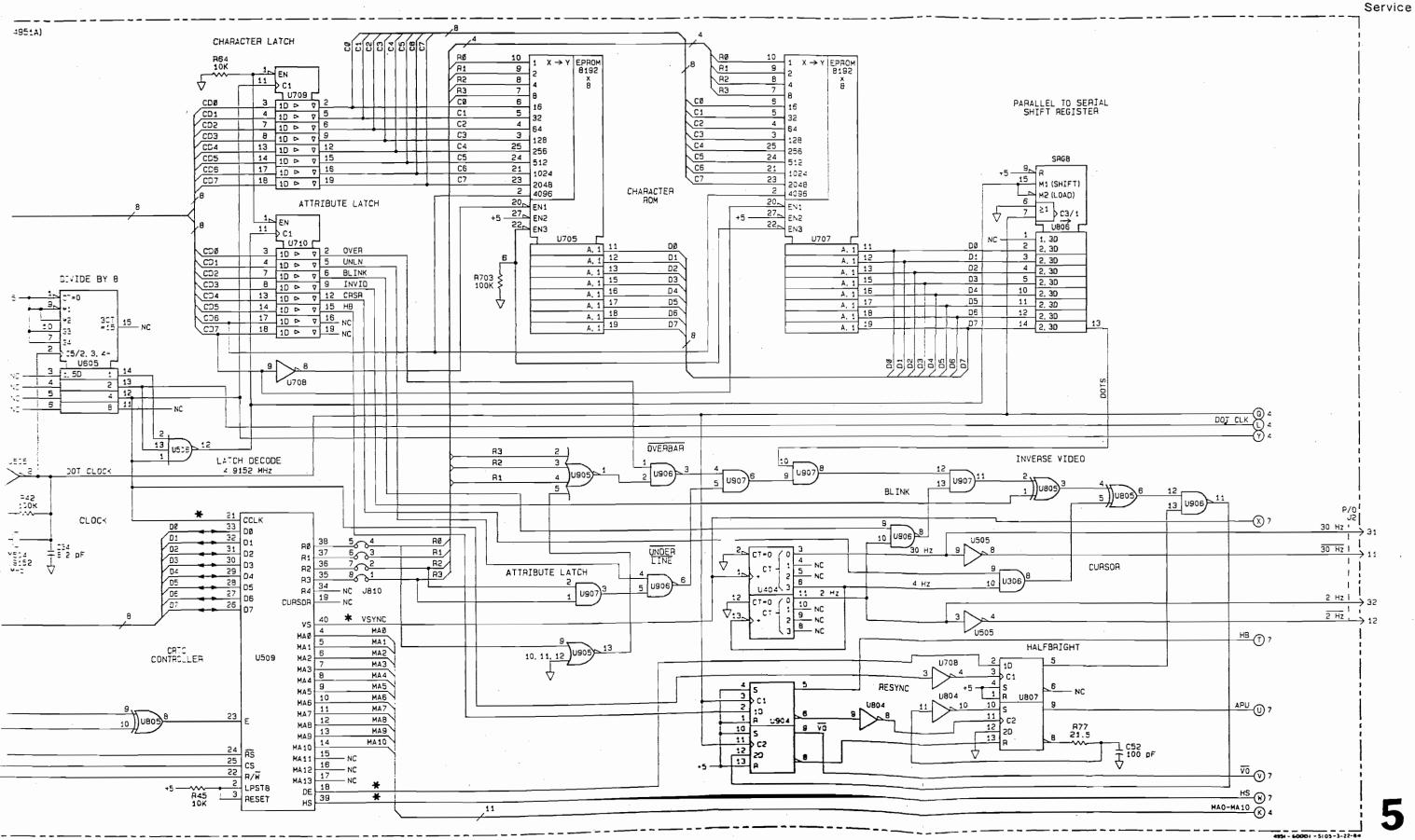
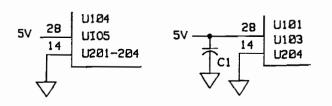
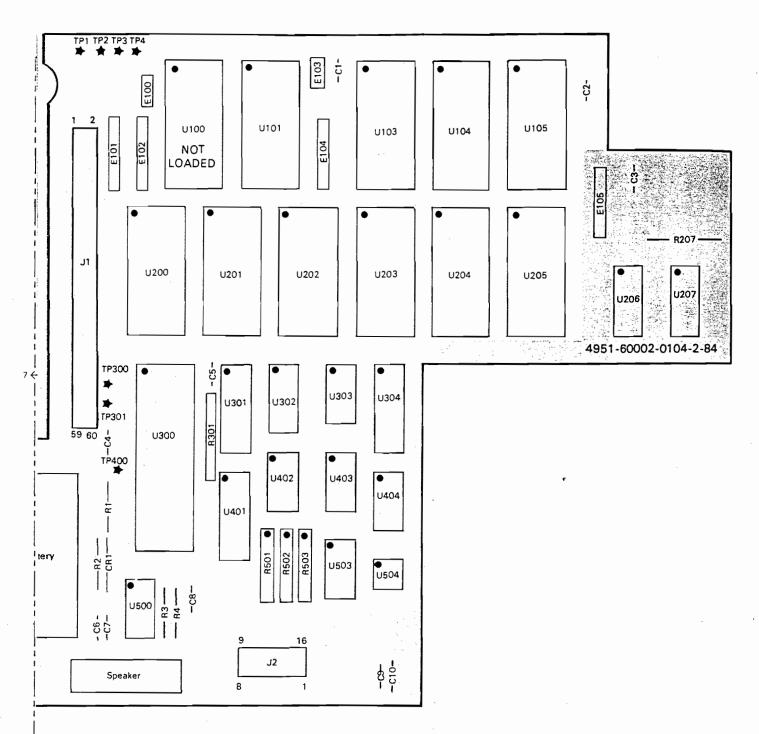
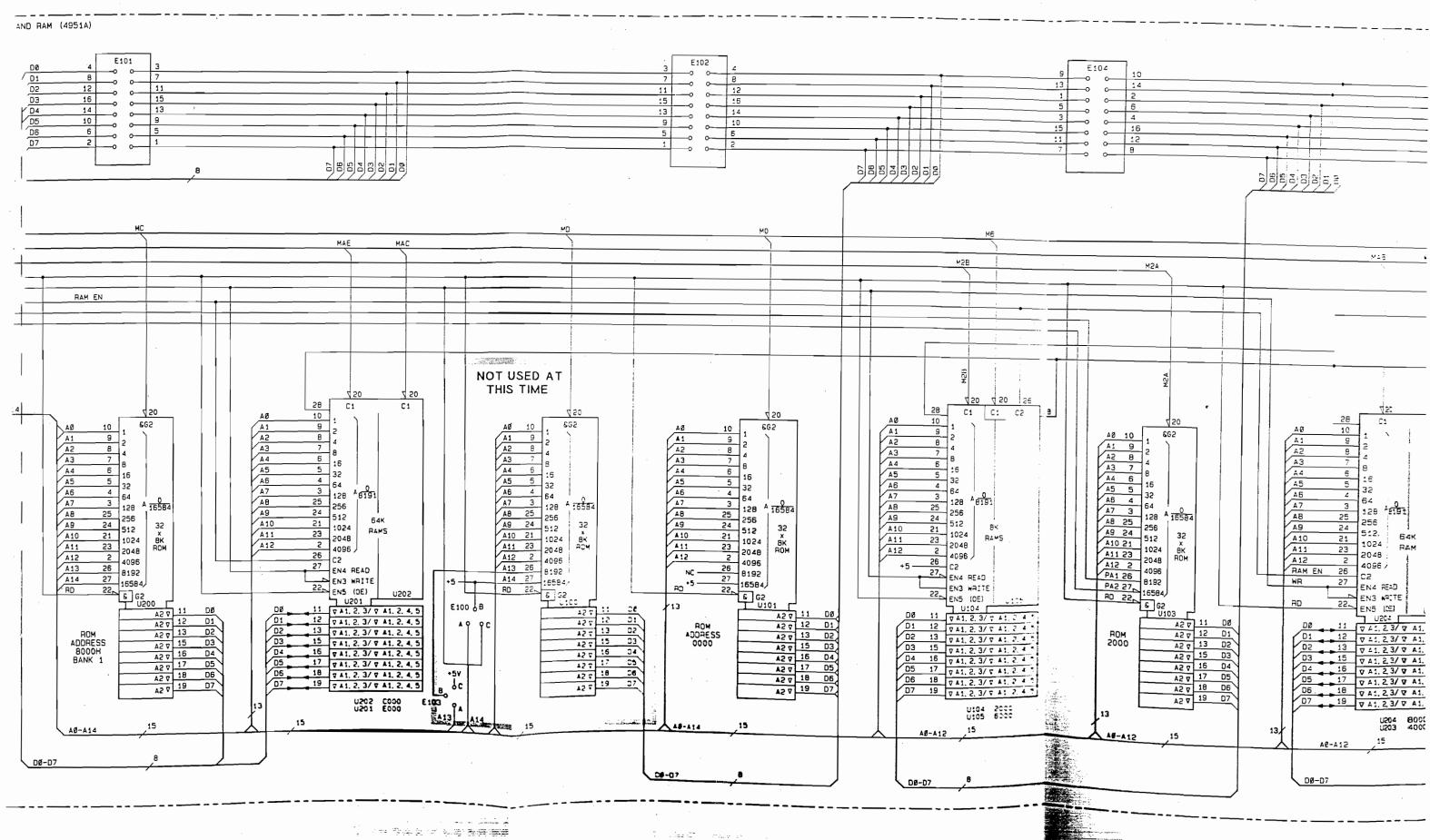
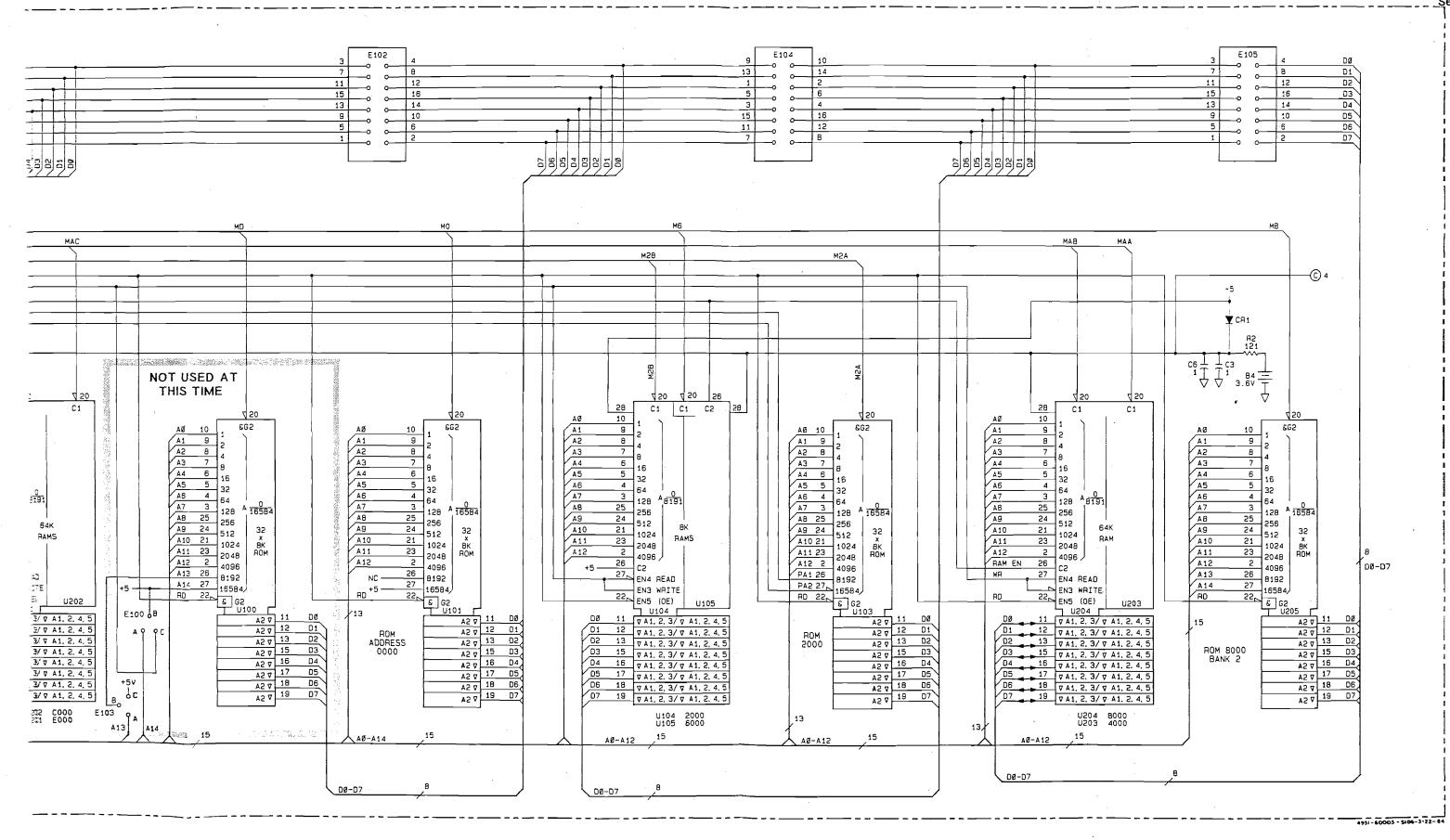
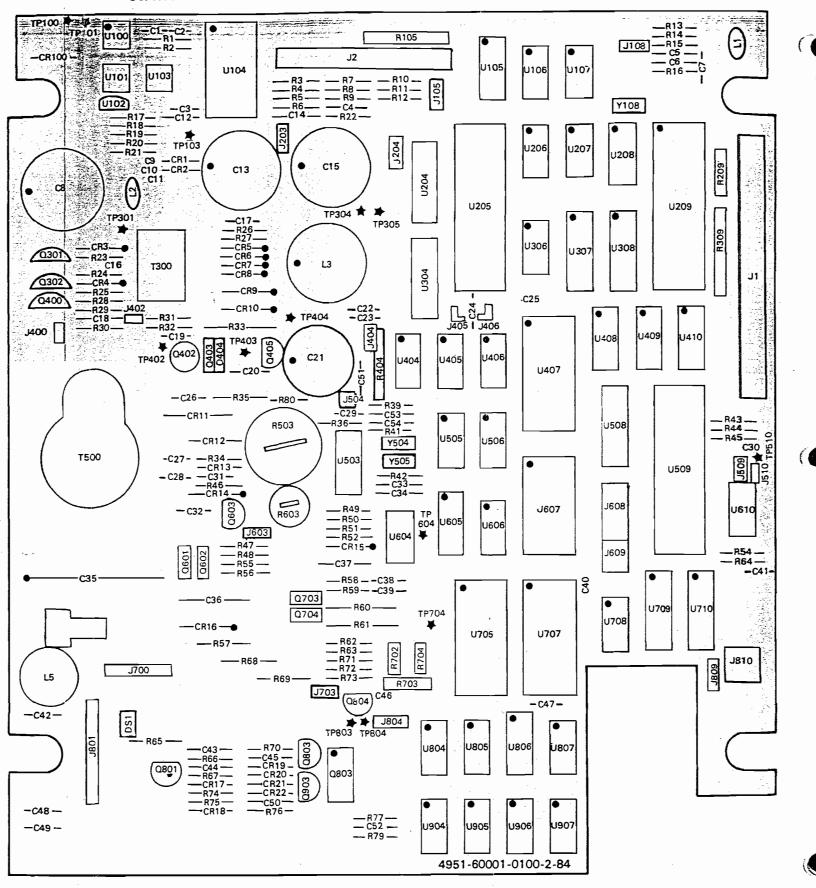
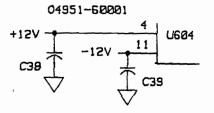
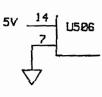
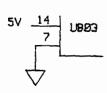
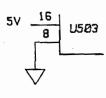





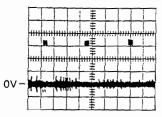
Figure 8-10. A1 CRT Controller Schematic

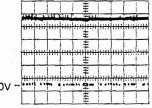




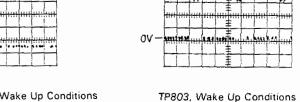

Figure 8-11. A2 ROM and RAM Schema




A1 Main Board Component Locator


E

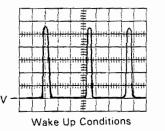




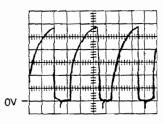
Q803 (base), Wake Up Conditions 5 msec/Div .5 V/Div, DC coupled

Q903 (collector), Wake Up Conditions 5 msec/Div 5 V/Div, DC coupled

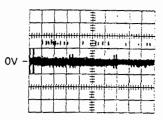
HORIZONTAL AMPLIFIER

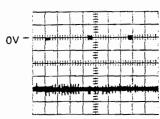

5 V/Div, DC coupled

5 msec/Div

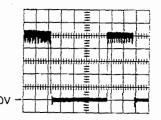

Q803 (collector), Wake Up Conditions

2 msec/Div

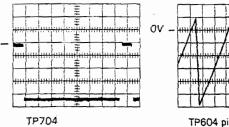

10 V/Div, DC coupled


Q601-Q602 (drain) pin 3 (T300), 20 μsec/Div 20 V/Div, DC coupled

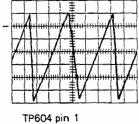
J603, Wake Up Conditions 20 μsec/Div 2 V/Div, DC coupled



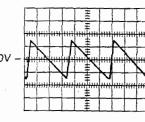
Q903 (base), Wake Up Condition 5 msec/Div .2 V/cm, DC coupled

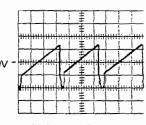

Wake Up Conditions

J804 (pin 12 of U803), 5 msec/Div 2 V/Div, DC coupled



U506 pin 8, Wake Up Conditions 10 µsec/Div 1 V/Div, DC coupled


VERTICAL AMPLIFIER


5 msec/Div 5 V/Div, DC coupled

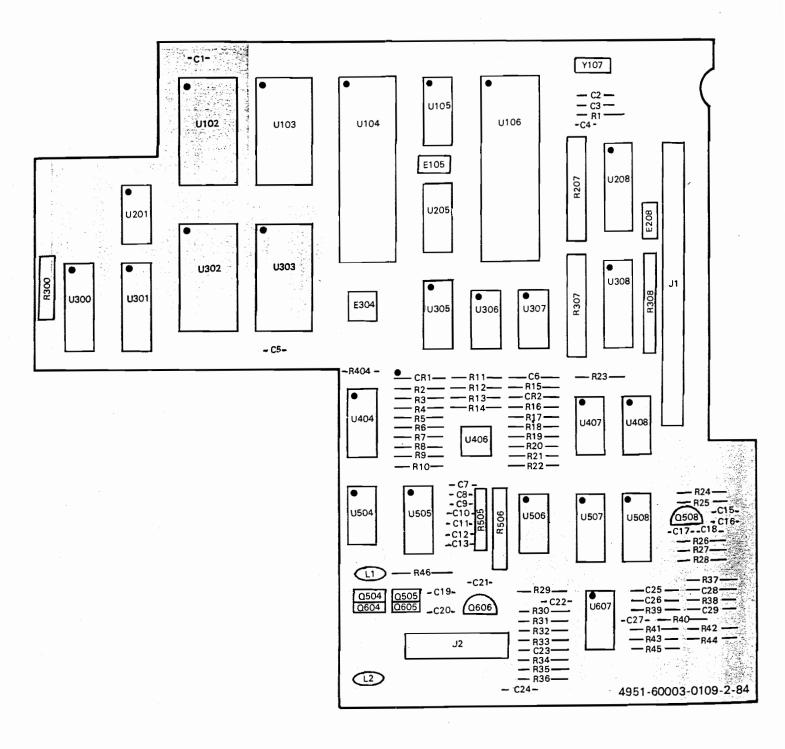
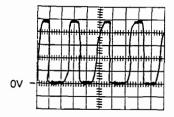
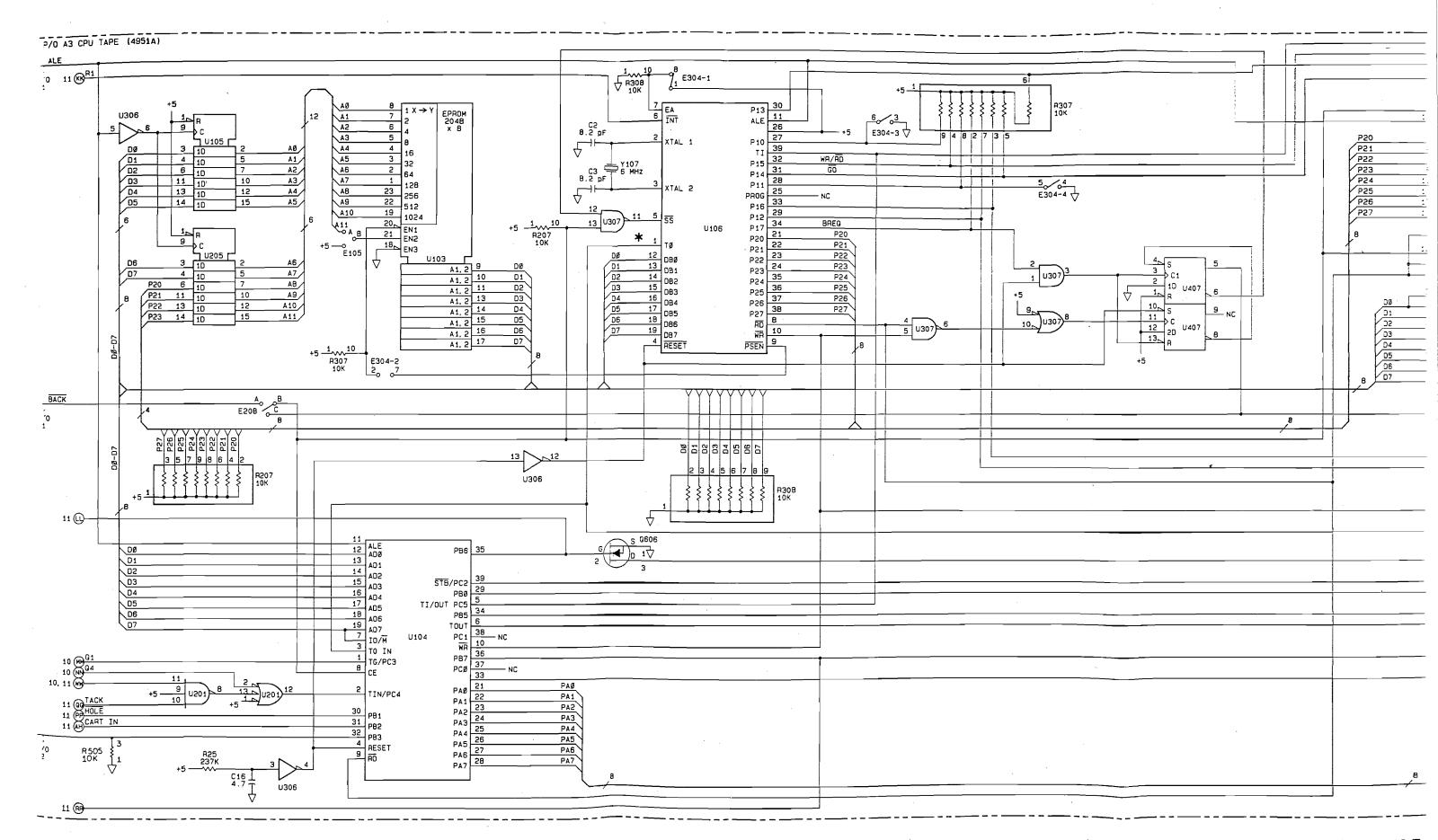
TP604 pin 1 5 msec/cm 5 V/cm, DC coupled

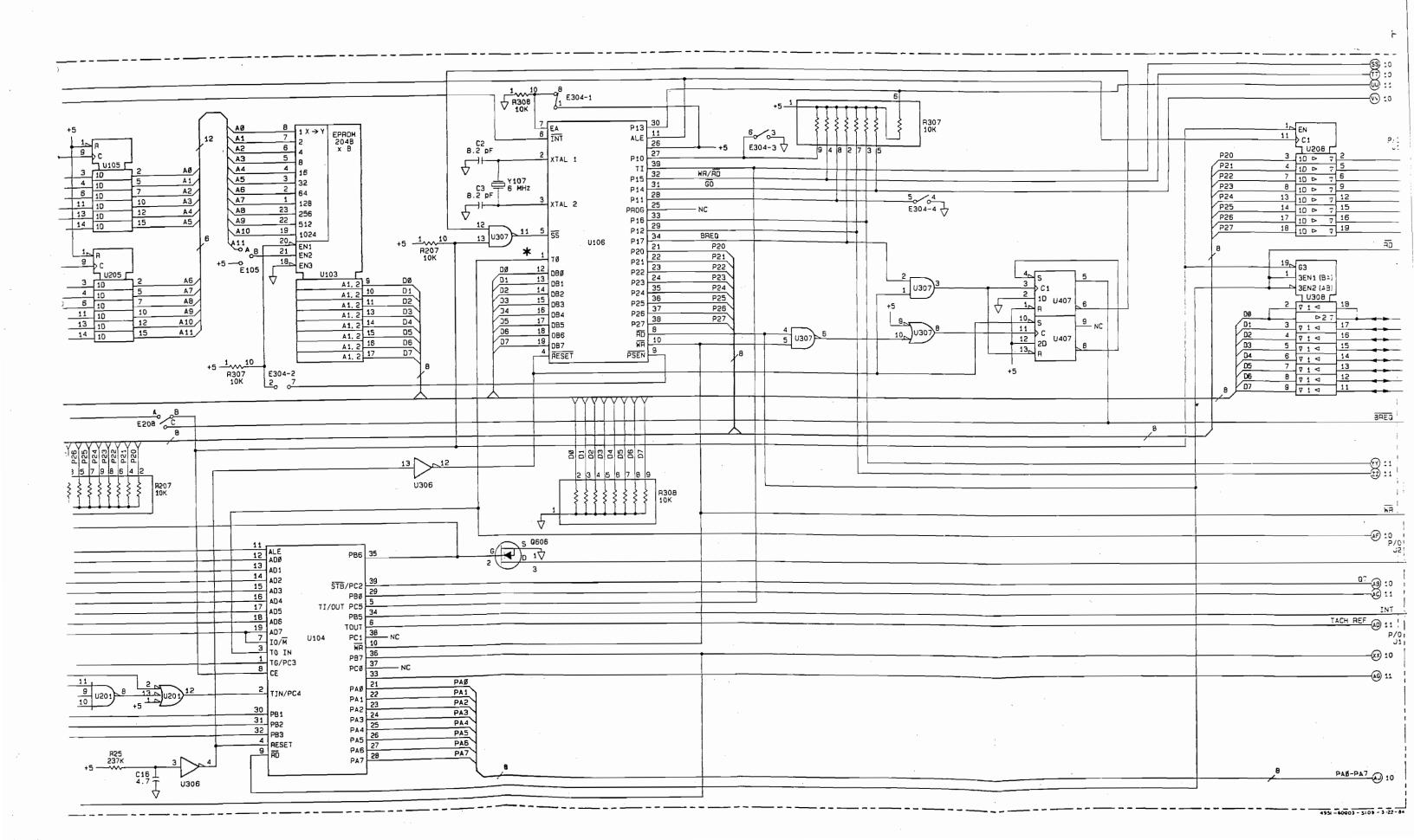
TP604 pin 2 5 msec/Div .5 V/cm, DC coupled

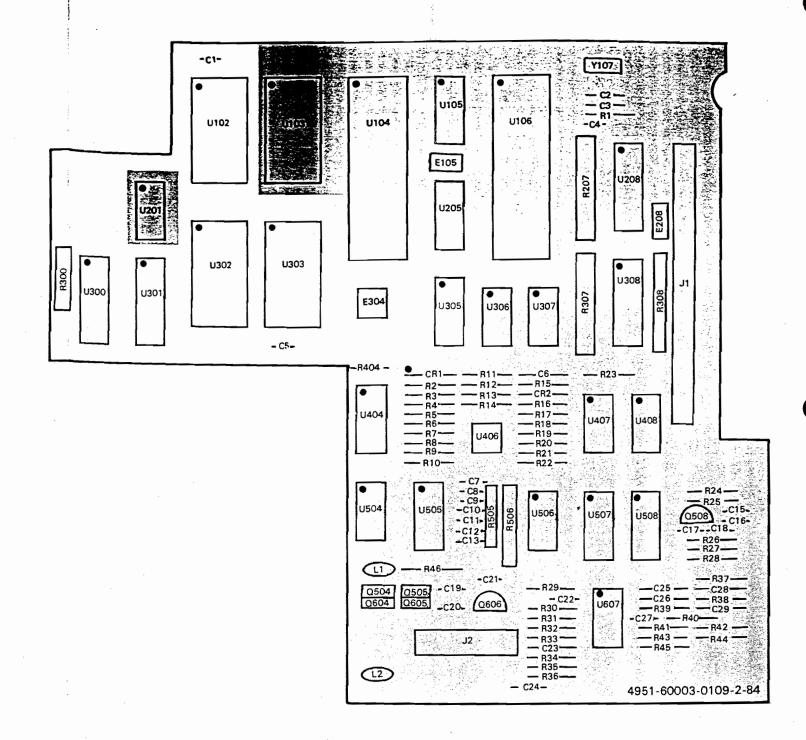
TP604 pin 3 2 msec/cm .5 V/cm, DC coupled

4951-5108-3-22-84

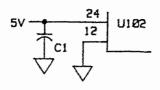
_1.

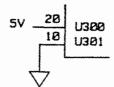




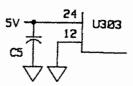

Figure 8-14. A3 Tape Board Component Locator

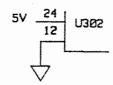

I/O SYSTEM CLOCK

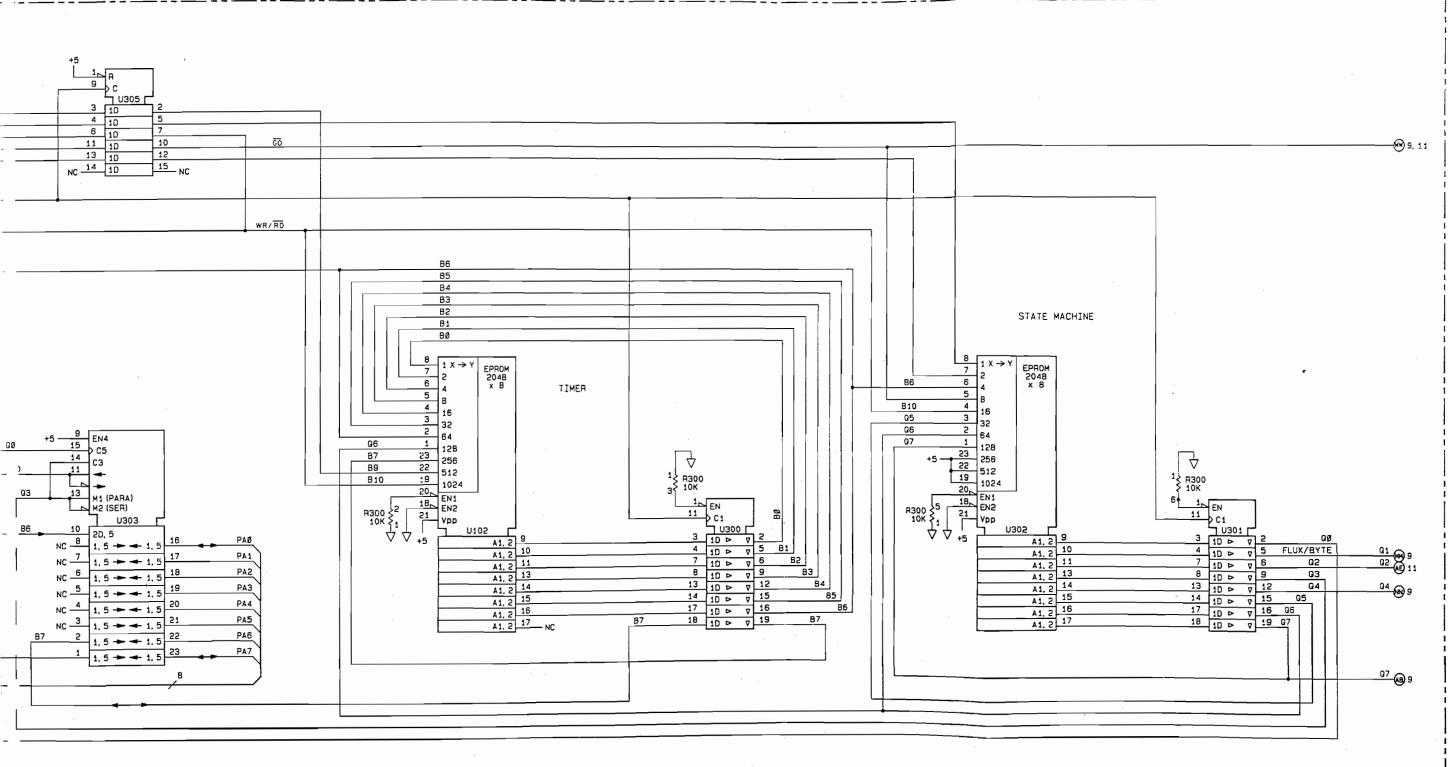
A3U106 pin 1 .2 µsec/Div 1 V/Div, DC coupled

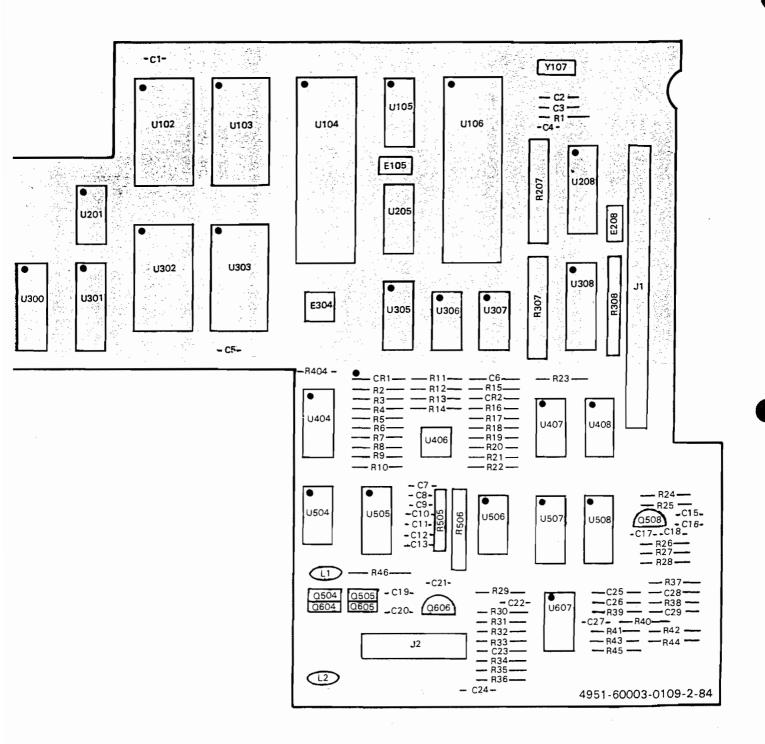


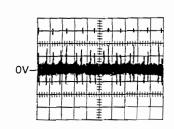


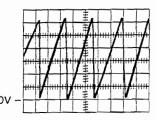



A3 Tape Board Component Locator

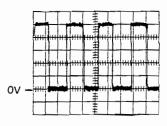

POWER AND GROUNDS

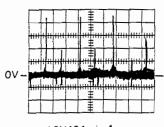


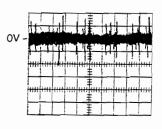


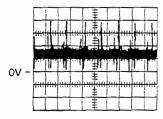

A3 Tape Board Component Locator

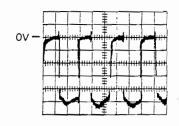
A3U504 pin 12 5 μsec/Div 2 V/Div, DC coupled A3U505 pin 8 5 μsec/Div 1 V/Div, DC coupled A3U506 pin 6 10 µsec/Div .05 V/Div, DC coupled A3U404 pin 16 10 μsec/Div 1 V/Div

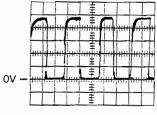

MOTOR SPEED CONTROL


A3U504 pin 10 10 μsec/Div .2 V/Div, DC coupled

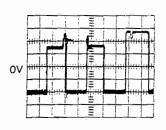

A3U505 pin 5 5 μsec/Div .5 V/Div, DC coupled


A3U404 pin 10 10 μsec/Div 1 V/Div, DC coupled

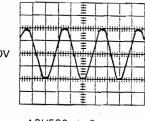

A3U404 pin 1 10 μsec/Div .5 V/Div, DC coupled


A3U504 pin 3 5 μsec/Div .5 V/Div, DC coupled

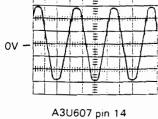
Junction of A3R13 & A3CR2 10 μsec/Div 1 V/Div, DC coupled

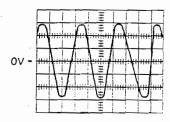


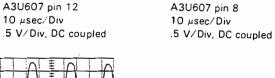
A3U404 pin 9 10 µsec/Div 1 V/cm, DC coupled

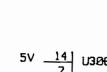


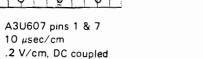
A3U506 pin 1 10 µsec/Div 1 V/Div, DC coupled

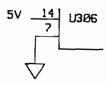

READ AMPLIFIER


A3U506 pin 14 10 μsec/Div 1 V/Div, DC coupled HF Rej depressed

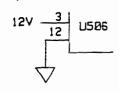

A3U506 pin 8 10 µsec/Div 1 V/Div, Dc coupled

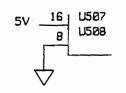


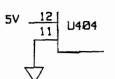

10 μsec/Div .5 V/Div, DC coupled

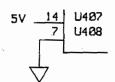


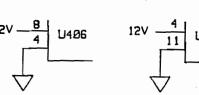
A3U607 pin 12 10 µsec/Div

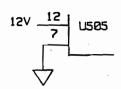


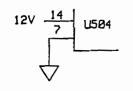





A3U607 pins 9 & 10


.1 V/Div, DC coupled


10 μsec/Div



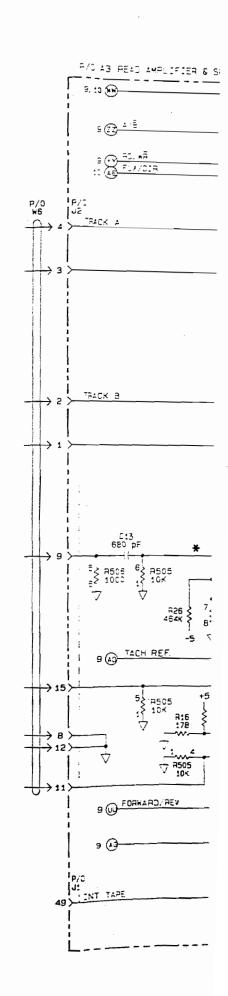


Figure 8-17. A3 Read Amplifier and Speed Control Schematic

4951-60003-5111-3-22-84

APPENDIX A GUIDE TO INTERPRETING ANSI

1. INTRODUCTION.

The Institute of Electrical and Electronics Engineers (IEEE) is developing ANSI symbol notation. The symbols used in this manual's schematics are designed according to IEEE Draft 91PR79-16 N. Some basic elements are similar to conventional symbology, inputs on left and outputs on the right. Where conventional symbology gives a signal mnemonic, ANSI describes the functional behavior of the logic circuit, and the signal's relationship to other signals. The interpretation of this effort in our schematics is to describe the truth table of each component using the ANSI symbology. Including this information reduces need for component data and other support documents. Definitions of mnemonics and symbols, as well as illustrations are provided. Table 3 located after the symbol descriptions is a quick reference for ANSI symbols and notation.

2. SYMBOL OUTLINE

The physical layout of each symbol is simple, Figure 1 shows two variations. The style used depends on the function of the component. The difference between 1(a) and 1(b) is the control block. The control block visually emphasizes the difference between control and data inputs.

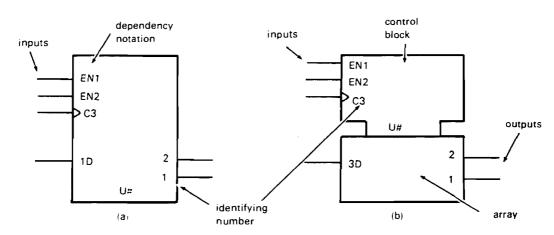


Figure 1. ANSI Symbol Outline

3. General Rules:

- 1. Inputs enter from the left side of the symbol. Elements modifying the inputs are shown with input notation.
- 2. Outputs leave from the right side of the symbol. Elements modifying the outputs are shown with output notation.
- A symbol may have input or output notation, or both.
- 4. Symbols contain two essential ingredients: data and signals which modify the data.
 - a. Data is shown coming into or leaving from the lower part of the symbol.
 - b. Signals modifying data or other signals are described with DEPENDENCY NOTATION. These signals are input to the control block when symbol outline shown in Figure 1(b) is used.

CIPENDENCY NOTATION

- 1 Dependency notation at inputs describes conditions which permit action.
- Dependency notation at outputs describes conditions which cause the outputs to be active.

(eneral Rules

- 1 The component's truth table is described as accurately as possible through the combination of dependency notation used.
- If input or output dependency notation is not present, then all inputs must be at their active state for the output to be active.
- 3 When an output has no label, its normally defined state is dependent on the inputs (low outputs will have low or negation symbol on the output line).
- 4. Labels describing the function of inputs or outputs are prefixed by identifying number(s) of any affecting input.
- 5. When an input or output is affected by more than one input, the identifying numbers of each affecting input will be in the label, separated by commas. The notation is read left to right.
- E. The complement of an internal logic state which affects an input or output has a bar placed over the identifying numbers at the affected inputs or outputs.
 - When two or more combinations of inputs make an output or input valid, they are separated by a slanted line (/, solidi).
 - Labels may be factored using algebraic techniques.

$$A + B = A \text{ or } B$$

 $A \cdot B = A \text{ and } B$

NOTE

For explanation and illustration in this text, the normally defined state of components in this Appendix follows positive logic conventions.

SEQUENCE OF INPUT LABELS

Labels are written left-to-right, in order (left has the first affect) according to their order of effect on the input.

- If an input with a single function is affected by other inputs, the qualifying symbol is preceded by the identifying number(s) of the affecting inputs.
- If an input performs several different functions, each may be described on separate input lines or on the same line with each effect separated by a slanted line (/). Figure 2 illustrates these two formats. In Figure 2(a) input c,

Figure 2. Dependency Notation Layout

a reset line is active when input a is high or (/) when inputs a and b are high. Figure 2(b) illustrates the same idea, but separates the two conditions showing them as separate inputs rather than combining them.

- 4. All affecting inputs must be in their respective active state for output or input notation to be valid.
- Each condition imposed on an input by dependency notation must be valid for that input to be active. When an
 input is disabled, its contents are not changed and the respective outputs remain at their existing internal logic
 states.
- 6. Two adjacent identifying number notations not separated by a non-numeric character should be separated by a

7. Sequence Of Output Labels

- 1. Outputs with several different labels, are shown in the following order (left to right):
 - a. the postponed output symbol, when used,
 - b. labels which indicate when the internal logic state of the output is affected, in left-to-right order,
 - c. labels which indicate an effect of the output on inputs or other outputs of the element,
 - d. finally, symbols for open circuit or tristate outputs are placed just inside the boundary.
- 2. If an output symbol has several sets of labels representing different functions (i.e., dependent on mode) these sets may be shown on different output lines connected outside the symbol outline (similar to the input examples shown in Figure B-2, only placed on the outputs).
 - a. In cases when this method of presentation is not advantageous, the output may be shown once and each different set of labels should be separated by a slanted line (/).
- Two adjacent identifying number notations not separated by a nonnumeric character should be separated by a comma.

8. DEPENDENCY NOTATION DESCRIPTION

To date IEEE has defined ten types of dependency notations. Table 1 gives a brief description of each type.

Table 1. ANSI Dependency Notation

Type of Dependency	Letter Symbol	Affecting Input At Its 1-State	Affecting Input At Its 0-State	
Address	А	Permits action (address selected)	Prevents action (address not selected)	
Control	С	Permits action	Prevents action	
Enable	EN	Permits action	Prevents action of inputs outputs off outputs at external high impedance, no change in internal logic state Other outputs at internal O state	
AND	G	Permits action	Imposes 0 state	
Mode	М	Permits action (mode selected)	Prevents action (mode not selected)	
Negate (X-OR)	N	Complements state	No effect	
RESET	R	Affected output reacts as it would to S=0, R=1	No effect	
SET	S	Affected output reacts as it would to S=1, R=0	No effect	
OR	V	Imposes 1 state	Permits action	
Inter- connection	Z	Imposes 1 state	Imposes 0 state	

. ADDRESS (A)

 $1e_{rr}$ resents address inputs of a device. In particular, memories and similar devices which use addresses to select pecified sections of a multidimensional array. Each address input is labeled with an A, followed by an identifying number vt: In corresponds to the address selected by the input. Figure 3 illustrates address dependency notation.

Figure 3. Address Dependency

INPUTS: In example (a) inputs b and c illustrate address lines which form a binary code address to select an output.

NOTE

Anytime that the form 3 or A0-3 is used in an ANSI symbol, it refers to the binary truth table. This means that there are four possible conditions (0-3) dependent on the state of the line. For example, if line a is high and line b is low, then address two (10) will be active. In other cases, with different dependency notation, it could be mode 2.

	а	b
0	0	0
1	0	1
2	1	0
3	1	1

The c input is a clock. The d input is a data input. Read the dependency notation as follows: mode 2 (10) and (,) the clock (4) must be active for data to enter the component.

Example (b) has three separate address lines. Each address is followed by an identifying number. Input e shows that when input b (identifying number 2) and input d, the clock (4) are active, data can be clocked into the component.

OUTPUTS: In this example there are no output dependencies. When the appropriate input lines are addressed, data will appear at the respective output.

10. CONTROL (C)

3

1

1

1

1

Control dependency identifies inputs that initiate actions, for example, an edge-triggered clock. These inputs can enable or disable data inputs of stored elements. An internal 1 state enables the affected inputs.

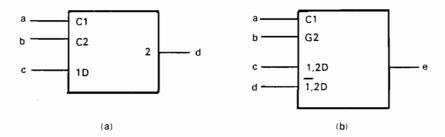


Figure 4. Control Dependency

Inputs: In example (a), both a and b are control inputs. They have different identifying numbers to show that they control different functions of the component. Thus input c is controlled by only input a.

In example (b), input c or d will be enabled dependent on the state of input a. When a is a 1, input c will be enabled; when it is a 0, input d will be enabled. The 2D shows that the affected input will be ANDed with input b (input b shows AND function).

Outputs: In example (a) for output d to be active, input b must be enabled (1 state).

In example (b), since no dependency notation is shown, the output is dependent on the inputs. When the inputs are active, the output is enabled.

1... ENABLE (EN)

It internal 0 state, the inputs and outputs affected are disabled, open collector outputs are turned off, three-state outputs are their normally defined internal logic states but externally exhibit high impedance, and all other outputs (e.g., totem pole outputs) stand at their internal 0 states.

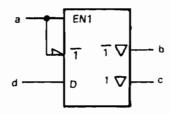


Figure 5. Enable Dependency

INPUT: Input a enables an output in either state. To emphasize this aspect, the signal is shown as two enable inputs. The second input has the identifying number 1 to show that it is dependent and in this case a part of EN1. Input d is a data input with dependencies.

OUTPUTS: When input a is low (0), output c is disabled and output b is enabled. When input a is high (1), output b is disabled and output c is enabled. The inverted triangle by the output indicates that it is a tri-state output.

AND (G)

we inputs or outputs ANDed together is a common relationship. Traditionally AND gates are drawn as a part of the property outline with the signal input connected to the gate. G dependency notation describes this relationship as sown in Figure 6. When an input or output stands at its internal 1 state, all inputs and outputs affected are enabled.

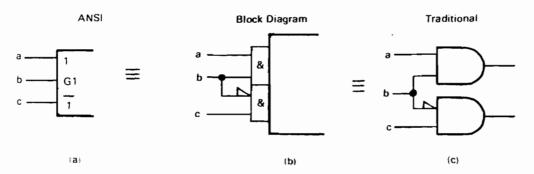


Figure 6. AND Dependency

INPUTS: Example (a) describes a component with two 2-input AND gate. Inputs a and c are dependent on input b. To show this dependency inputs a and c are labeled with a "1", which refers to the 1 of input b. To make input a active, input b must be at a 1 state (high); for input c to be active, input b must be at a 0 state (low).

1

OUTPUTS: Although no outputs are shown in the above examples, when a G dependency appears, they should be read the same way as inputs.

13. MODE (M)

]

Mode dependency identifies one or more inputs which select the operation mode of a component. When an M dependency identifies several modes or functions, the appropriate identifying number is placed in the label of the affected input or output. Each function applying to an input is seperated by a slanted line (/). When the M input or output is at its internal 1 state, the affected inputs or outputs are enabled.

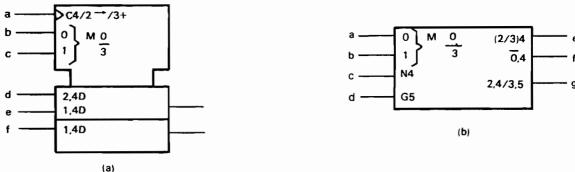


Figure 7. Mode Dependency

INPUTS: In example (a), input a is the control input. It controls three functions. It is a clock for entering data. In mode 2 it causes data to shift right once and in mode 3 the contents of the register are incremented by 1 count. Inputs b and c form a binary number. The mode or state which is created identifies the operation mode of the component. In this case:

Mode 0 (b=0,c=0), inputs do not affect outputs, so the outputs remain at their existing state Mode 1 (b=1,c=0), inputs e and f are active, data enters the component Mode 2 (b-0,c=1), shifting down and serial loading through input d takes place Mode 3 (b=c=1), counts up by 1 count per clock pulse

NOTE

Any time that the form 3 or M0-3 is used in an ANSI symbol, it refers to the binary truth table. This means that there are four possible conditions (0-3) dependent on the state of the line. For example, if line a is high and line b is low then mode 2 (10) will be active.

	а	b
0	0	0
1	0	1
2	1	0
3	1	1

Input d is enabled in mode 2 when the control (4) is active.

Input e is enabled in mode 1 when the control (4) is active.

Input f is enabled in mode 1 when the control (4) is active.

In example (b), inputs a and b should be combined to represent a binary number. Each binary number enables a different mode. Input c forms an exclusive OR relationship with any input or output it modifies. Input d forms an AND relationship with anything it modifies.

OUTPUTS: In example (a) the outputs are determined by the inputs, so no further dependency notation is needed.

In example (b), output e may also be read 2.4/3.4. When mode 2 or mode 3 is negated by input c, this output will be active. Output f is active whenever the mode is not 0 and negated by input c. When output g is active, mode 2 is negated by input c or mode 3 is ANDed with input d.

NEGATE (N)

3

input or output affected by N inputs or outputs has an exclusive OR relationship with that input or output. When an just or output stands at its internal 1 state, the internal logic state of each input and output stands at its internal 0 ate.

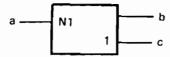
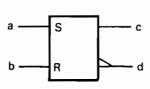


Figure 8. Negate Dependency

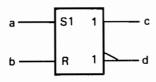
INPUT: The a input indicates that there is an exclusive OR relationship.

OUTPUTS: Output b is not affected by input a. Output c has an exclusive OR relationship with input a. If a = 0, then c = b; if a = 1, then c = b.

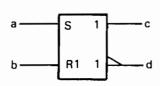
Table 8. Exclusive OR Truth Table

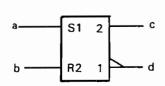

A	В	С
0	0	0
0	1	1
1	0	1
1	1	0

15. RESET (R) and SET (S)


SET AND RESET dependencies specify the effect of a combination of R and S elements in a bistable component. R and S dependencies affect outputs only.

When S input stands at its internal 1 state, the outputs will take on the internal logic states for the combination S=1 and R=0, regardless of the state of any R input. At an internal 0 state the S dependency has no effect.


An R input at its internal 1 state causes the outputs to take on the internal logic state for the combination S=0 and R=1, regardless of any S state input.


а	Ь	c d
0	0	no change
0	1	0 1
1	0	1 0
1	1	not specified

а	Ь	c d
0	0	no change
0	1	0 1
1	0	1 0
1	1	1 0

a	b	С	d
0	0	no	change
0	1	0	1
1	0	1	0
1	1	С	С

4

а	b	С	d
0	0 1 0 1	no ch 0 1	nange 1 0

NOTE

0 = external 0 state

1 = external 1 state

Figure 9. RESET/SET Dependency

6. OR (V)

'c pendency shows a Boolean relationship between inputs and outputs. When a V input or output is at an internal 1 tate, all inputs and outputs affected are at their internal 1 state. When a V input or output is at an internal 0 state, all inputs and outputs affected are at their normally defined internal logic states.

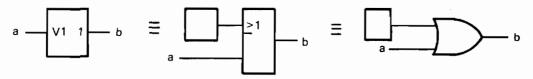


Figure 10. Or Dependency

INPUT: The a input indicates that there is an OR relationship to the output.

OUTPUT: The a input is ORed with internal state of the b output.

TRANSMISSION (X)

ransmission dependency indicates controlled bidirectional connections between affected input and output ports. When r (input or output is at its internal 1 state, all input and output ports affected are bidirectionally connected and are at no same internal logic state or analog signal level. When an X input or output is at its internal 0 state, the connection ssociated with this dependency notation is broken.

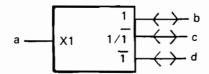


Figure 11. Transmission Dependency

INPUT: Input a indicates that a transmission dependency exists between outputs.

OUTPUT: When input a is at a 1 state, there is a bidirectional internal connection between outputs b and c. If input a is at a 0 state there is a bidirectional connection between outputs c and d.

. INTERCONNECTION (Z)

1_

Indicates connections between inputs, outputs, internal inputs, and internal outputs in any combination inside the supply. The internal logic state of an input or output affected by a Z input or output remains the same, unless modified by additional dependency notation.

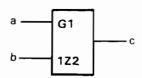
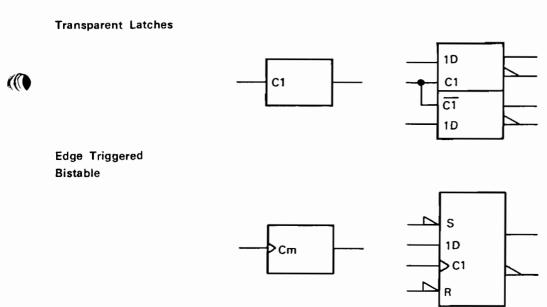


Figure 12. Interconnection Dependency

INPUTS: Input a indicates an AND relationship. When input a is ANDed with input b there is an internal connection which will not affect the output state.

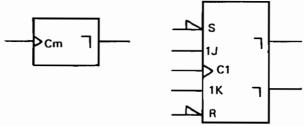

OUTPUT: Notice that there is no output dependency, this means that any output is dependent on the inputs. Output c is active if input b makes the internal connection. The output state is the same as the internal logic state.

19. BISTABLE ELEMENTS

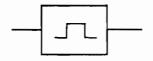
The four types of bistable elements use the dynamic input symbol, the postponed symbol, and dependency notation.

- 1. Transparent latch inputs are level-operated. The D input is active while the C input is at its internal 1 state.
- 2. Edge-triggered components accept data from D, J, K, R, or S inputs on the active transition of the C input.
- Pulse-triggered components require data to be setup before the control pulse starts. The C input is static since the output is postponed
- 4. The data-lock-out component is similar to the pulse triggered. The C input is dynamic since after input C goes through its active transition, the data inputs are disabled and data is not held. The output is postponed until the C input returns to its initial external level.

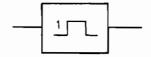
Synchronous inputs are identified by their dependency labels (1D, 1J, 1K, 1S, 1R), whereas asynchronous inputs (S,R) are not dependent on C inputs.


Pulse Triggered Bistable

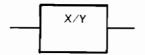
11


ati..._ock-Out

O. MONOSTABLE ELEMENTS


are two types of monostable elements: retriggerable and non-retriggerable. The first retriggers during the output alse. The second can not be retriggered during the output pulse.

1 Retriggerable Monostable


/han the input changes to a 1 state the output changes to or remains at a 1 state. After a period of time characteristic to u device, the output returns to 0 state.

Non-retriggerable Monostable

When the input changes to 1 state, the output changes to 1 state. The output returns to 0 state after a period of time characteristic of the device, regardless of any input variable changes.

25. CODERS

X and Y may be replaced by appropriate indications of the code used to represent the information at the inputs and outputs respectively.

F each input code, the internal input logic state determines an internal value. This value is reproduced by the internal logic states of the outputs, depending on the output code.

F ationships between internal logic states of inputs and the internal value is indicated one of two ways.

- 1. Labeling the inputs with numbers, the internal value equals the sum of the weights associated with the inputs at their internal 1 state.
- 2. Replacing X with an appropriate indication of the input code and labeling the inputs with characters that refer to this code.

Relationships between the internal value and the internal logic states of the output are indicated in one of two ways.

- 1. The output label is a list of numbers which represent the internal values leading to the internal 1-state of the output. Each number in the list is separated by a slanted line (/). This labeling may be used when Y is replaced by a letter denoting a type of dependency. If a continuous range of internal values produces the internal 1 state of an output, this is indicated by two numbers. The beginning and the end of the range are separated by three dots.
- 2. Replace Y with an appropriate indication of the output code and label the outputs with characters that refer to this code.

Table 3. General Qualifying Symbols

Symbol	Symbol Description			
&	And gate or function.			
>1	OR gate or function. The symbol was chosen to indicate that at least one active input is needed to activate the output.			
=1	Exclusive OR. One and only one input must be active to activate the output.			
=	Logic identity. All inputs must stand at same state.			
2k	An even number of inputs must be active.			
2k+1	An odd number of inputs must be active.			
1	The one input must be active.			
⊳ or ⊲	A buffer or element with more than usual output capability (symbol is oriented in the direction of signal flow).			
П	Schmitt trigger; element with hysteresis.			
X/Y	Coder, code converter (DEC/BCD, BIN/OUT, BIN/7-SEG, etc.).			
MUX	Multiplexer/data selector.			
DMUX or DX	Demultiplexer.			
2	Adder.			
P-Q	Subtracter.			
CPG	Look-ahead carry generator.			
π	Multiplier.			
COMP	Magnitude comparator.			
ALU	Arithmetic logic unit.			
. ∼	Retriggerable monostable.			
1	Non-retriggerable monostable (one-shot).			
G K	Astable element. Showing waveform is optional.			
!G -5-5-	Synchronously starting astable.			
حرح وز	Astable element that stops with a completed pulse.			
SRGm	Shift register. m = number of bits.			
CTRm	Counter. m = number of bits; cycle length = 2m.			
CTR DIVm	Counter with cycle length = m.			
ROM	Read-only memory.			
RAM	Random-access read/write memory.			
FIFO	First-ın, first-out memory.			

^{*}Not all of the general qualifying symbols have been used in this manual but they are included here for the sake of completeness.

Table 3. General Qualifying Symbols (cont'd.)

Symbol	Description
7	Postponed output (of a pulse-triggered flip-flop). The output changes when input initiating change (e.g., a C input) returns to its initial external state or level.
— ₽	Bi-threshold input (input with hysteresis).
△	NPN open-collector or similar output that can supply a relatively low-impedance L level when not turned off. Requires external pull-up. Capable of positive-logic wired-AND connection.
⇔	Passive-pull-up output is similar to NPN open-collector output but is supplemented with a built-in passive pull-up.
>-	NPN pen-emitter or similar output that can supply a relatively low-impedance H level when not turned off. Requires external pull-down. Capable of positive-logic wired-OR connection.
⇒ ⊢−	Passive-pull-down output is similar to NPN open-emitter output but is supplemented with a built-in passive pull-down.
▽├──	3-state output.
	Enable input When at its internal 1-state, all outputs are enabled. When at its internal 0-state, open-collector and open-emitter outputs are off. Three-state outputs are at normally defined internal logic states and at external high-impedance state, and all other outputs (e.g., totem poles) are at the internal 0-state.
	Usual meanings associated with flip-flops (e.g., R = reset, T = toggle)
□ □	Data input to a storage element equivalent to:
——— m ——— m	Shift right (left) inputs, $m = 1, 2, 3$ etc. If $m = 1$, it is usually not shown.
— +m — -m	Counting up (down) inputs, $m = 1, 2, 3$ etc. If $m = 1$, it is usually not shown.
o m	Binary grouping. m is highest power of 2.
CT = 15	The contents-setting input, when active, causes the content of a register to take on the indicated value.
CT = 9	The content output is active if the content of the register is as indicated.
	Input line grouping indicates two or more terminals used to implement a single logic input.
	e.g., The paired expander inputs of SN7450. $\begin{bmatrix} x \\ x - x \end{bmatrix}$ $\begin{bmatrix} x \\ x - x \end{bmatrix}$

Fixed-state output always stands at its internal 1 state.

1

6

Table 3. General Qualifying Symbols (cont'd.)

Symbol	Description			
<u> </u>	Logic negation at input. External 0 produces internal 1.			
þ <u> </u>	Logic negation at output. Internal 1 produces external 0.			
	Active-low input. Equivalent to — in positive logic.			
.	Active-low output. Equivalent to in positive logic.			
1	Active-low input in the case of right-to-left signal flow.			
	Active-low output in the case of right-to-left signal flow.			
	Signal flow from right to left. If not otherwise indicated, signal flow is from left to right.			
	Bidirectional signal flow.			
	POSITIVE NEGATIVE POLARITY LOGIC LOGIC INDICATION			
$\begin{array}{c} \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Dynamic inputs active on indicated transition of the property			
\rightarrow	Nonlogic connection. A label inside the symbol will usually define the nature of this pin.			
\bigcirc	Input for analog signals.			
	Internal connection. 1 state on left produces 1 state on right.			
<u> </u>	Negated internal connection. 1 state on left produces 0 state on right.			
	Dynamic internal connection. Transition from 0 to 1 on left produces transitory 1 state on right.			
	Internal input (virtual input). It always stands at its internal 1 state unless affected by an overriding dependency relationship.			
	Internal output (virtual output). Its effect on an internal input to which it is connected is indicated by dependency notation.			

The internal connections between logic elements abutted together may be indicated by the symbols shown. Each logic connection may be shown by the presence of qualifying symbols at one or both sides of the common line and if confusion can arise about the numbers of connections, use can be made of one of the internal connection symbols.

internal (virtual) input is an input originating somewhere else in the circuit and is not connected directly to a terminal. The invernal (virtual) output is likewise not connected directly to a terminal.

APPENDIX B HP 18173A RS-232C/V.24/INTERFACE POD

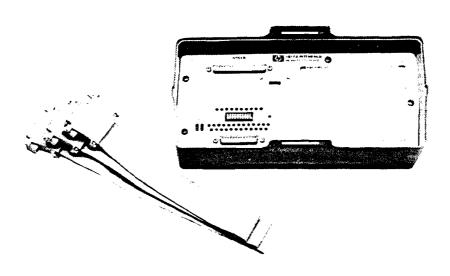


Figure B-1. HP 18173A Interface Pod

B-1. INTRODUCTION

1

The HP 18173A is an RS-232C/V.24 Interface Pod designed to provide the connection between the HP 4951A Protocol Analyzer and the Data Terminal Equipment (DTE) and/or Data Circuit-Terminating Equipment (DCE). The HP 18173A is compatible with CCITT V.24 and EIA RS-232C electrical, mechanical, functional, and procedural specifications.

This appendix includes information to install, operate, and service the HP 18173A.

-2. INSTALLATION

pennect the Interface Pod to the HP 4951A Protocol Analyzer, turn off the power and attach the pin connector to the port on the back of the Protocol Analyzer. Tighten the hex screws to ensure at the cable will not pull off during operation.

CAUTION

Turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

-3. OPERATION

ice the Interface Pod cable is installed, all operations are performed from the keyboard. See the perating Manual (HP 04951-90003) for procedures.

- 1. PERFORMANCE VERIFICATION

e Performance Verification test is performed by the operator. Follow the procedure described in ar graph B-5.

3~ . HP 18173A Self Test

Description

This test has two parts: a check that there is an Interface Pod connected to the Protocol Analyzer and verification that the data lines work.

Set Up

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELFTEST>.
- 4. Select <POD TEST>.

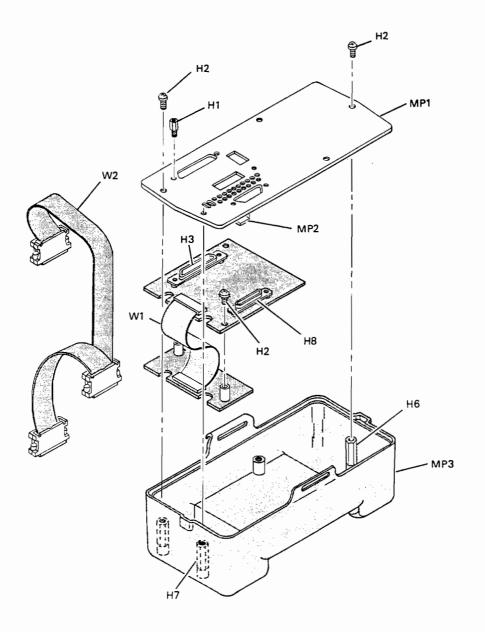
Procedure

- 1. When the <POD TEST> softkey is pressed, the Interface Pod test will be automatically performed.
- 2. If there are no failures, POD TEST PASSED is displayed.

B-6. ADJUSTMENTS

There are no adjustments for the HP 18173A.

B-7. REPLACEABLE PARTS


The following tables and figure give information for ordering replacement parts. Table B-1 is the Manufacturer's Code List. Table B-2 lists the replaceable parts in alphanumeric order. Information is given for the Description, Quantity, HP Part Number, and Manufacturers Part Number. Chassis and mechanical parts are listed in Figure B-2. To order a listed part, quote the HP Part Number, indicate the quantity needed and send the order to the nearest Hewlett-Packard office.

When ordering a part not listed, include the instrument model number, serial number, and a physical and functional description of the part. Send the order to the nearest Hewlett-Packard office.

Table B-1. HP 18173A Manufacturers Code List

MFR NO.	MANUFACTURER NAME	MANUFACTURER NAME ADDRESS		ZIP CODE
00000	ANY SATISFACTORY SUPPLIER			
01121	ALLEN-BRADLEY CO	MILWAUKEE	WI	53204
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX	ΑZ	85008
11236	CTS OF BERNE INC	BERNE	IN	46711
13606	SPRAGUE ELECT CO SEMICONDUCTOR DIV	CONCORD	NH	03301
19701	MEPCO/ELECTRA CORP	MINERAL WELLS	TX	76067
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD	PA	16701
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO	CA	94304
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	MA	01247

E

E

E

Ē.

Ε.

Ę.

E

E

Ĺ

E-.'

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number	
H1 H2 H3 H6 H7 H8 MP1 MP2 MP3	1251-2942 2200-0112 1251-6074 0380-T39625 1251-4946 0380-T39626 18173-00001 5040-4478 4040-2171	7 3 4 5	4 3 1 1 2 1	SCR POST LOCK SCR, MCH, 4-40, 5IN CONNECTOR-37 PIN STANDOFF CONNECTOR-25 PIN STANDOFF RS-232C PANEL LENS HOUSING	04486 04771 04486 28480 04486 28480 28480 28480 28480	D2D4-18-2 ORDER BY DESCRIPTION DC375V O380-T39625 DB-255V O380-T39626 18173-00001 5040-4478 4040-2171	
W1 W2	18173-61601 18173-61602	5	1	CABLE, INTERCONNECT CABLE, RS-232C	28480 28480	18173-61601 18173-61602	

Figure B-2. HP 18173A Exploded View

Table B-2. HP 18173A Replaceable Parts List

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	18173-60001	8	1	RS-232C INTERFACE POD	28480	18173-60001
A1C1 A1C2 A1C3 A1C4 A1C5	0180-1746 0180-1746 0180-1746 0160-5299 0160-5299	5 5 9 9	3	CAPACITOR.FXD 15UF ← 10% 20VDC TA CAPACITOR.FXD 15UF ← 10% 20VDC TA CAPACITOR.FXD 15UF ← 10% 20VDC TA CAPACITOR.FXD 22UF ← 20% 50VDC CAPACITOR.FXD 022UF ← 20% 50VDC	56289 56289 56289 02010 02010	150D 156X9020B2 150D 156X9020B2 150D 156X9020B2 MD011C223MAA MD011C223MAA
A1C6 A1C7 A1C8 A1C9 A1C10 A1C11 A1C12 A1C13 A1C14 A1C15	0160-5299 0160-5299 0160-5299 0180-1846 0180-1846 0160-0576 0168-0576 0160-0576	0 0 0 0 0 0 0 0 0 0 0	2	CAPACITOR-FXD 022UF-20% 50VDC CAPACITOR-FXD 022UF-20% 50VDC CAPACITOR-FXD 022UF-20% 50VDC CAPACITOR-FXD 022UF-10% 35VDC TA CAPACITOR-FXD 1.0F-10% 35VDC TA CAPACITOR-FXD 1.0F +-20% 50VDC CER	02010 02010 02010 02010 56289 56289 28480 28480 28480 28480	MD011C223MAA MD011C223MAA MD011C223MAA 150D225X903582 150D225X903582 1160 -0376 0160-0376 0160-0376 0160-0576
A1C16 A1C17 A1C18 A1C19 A1C20	0160-0576 0160-0576 0180-3050 0160-0576 0160-0576	55855	1	CAPACITOR-FXD .1UF +-20% 30VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD 330UF+50-10% 16VDC AL CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480 28480 28480 28480	0160-0576 0160-0576 0180-3050 0160-0576 0160-0576
A1E105 A1E208 A1J1 A1J2 A1K1 A1K2 A1K3	1260-0445 1810-0206 1251-6074 1251-4946 0490-1354 0490-1383	0 0 4 5 B 3 3	1 1 1 2	CONNECTOR 3-PIN M POST TYPE CONNECTOR 3-PIN M POST TYPE CONNECTOR 37-PIN F D GUBHINIATURE CONNECTOR 25-PIN F D SUBHINIATURE CONNECTOR 25-PIN F D SUBHIN RELAY 2C 5VDC-COIL 2A 250VAC RELAY 4C 5VDC-COIL 2A 250VAC RELAY 4C 5VDC-COIL 2A 250VAC	03206 02483 28480 28480 28480 28480 28480	65500-109 750-81-810K 1281-6074 1281-4946 0498-1384 0496-1383 0490-1383
A1R1 A1R2 A1R3 A1R4 A1R5	0.699-0556 0.699-0556 0.699-0556 0757-0.458 0757-0.289	2 2 7 2	3 1 1	RESISTOR 5.11 1% .125W F TC=0+-100 RESISTOR 5.11 1% .125W F TC=0+-100 RESISTOR 5.11 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 13.3K 1% .125W F TC=0+-100	29480 29480 28480 24546 19701	0699-0556 0699-0556 0699-0556 C4-1/8-T0-5112-F HF4C1/8-T0-1332-F
A1R6 A1R7 A1R8 A1R9 A1R10	0698-3156 0698-3453 0698-3158 0698-3266 0698-3266	2 2 4 5 5	1 1 1 2	RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 196K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4·1/8-T0-1472-F C4·1/8-T0-1963-F C4·1/8-T0-2372-F C4-1/8-T0-2373-F C4·1/8-T0-2373-F
A1R11 A1R12 A1R13 A1R14 A1R15	0757-0460 0757-0461 0683-1025 0683-1025 0757-0462	1 2 9 9	1 1 2 1	RESISTOR 61.9K 1% .125W F TC=0+-100 RESISTOR 68.1K 1% .125W F TC=9+-100 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 1K 5% .25W FC TC=-400/+600 RESISTOR 75K 1% .125W F TC=0+-100	24546 24546 01121 01121 24546	C4-1/8-T0-6192-F C4-1/8-T0-6812-F CB1025 CB1025 C4-1/8-T0-7502 F
A1R16 A1R100 A1R200 A1R201 A1R202	0698-8820 1810-0292 1810-0679 1810-0679 1810-0679	7 2 9 9	1 1 10	RESIDTOR 4.64 1% .125W F TC=0+-100 NETWORK-RES 14-DIP220.0 OHM X 7 RES NETWK SIP 4 RES NETWK SIP 4 RES NETWK SIP 4	28480 01121 28483 28480 28480	0698-8020 3148221 1010-0679 1010-0679 1010-0679
A1R300 A1R301 A1R302 A1R400 A1R401	1810-0679 1010-3679 1010-0679 1010-0679 1010-0679	9 9 9 9		RES NOTWK BIP 4 RES NETWK BIP 4 RES NOTWK BIP 4 RES NETWK SIP 4 RES NETWK SIP 4	28480 28480 28480 28480 28480	1810-0679 1010-0679 1010-0679 1010-0679 1810-0679
A1R402 A1R500 A1R501 A1R601 A1R602	1810-0206 1810-0679 1810-0679 1810-0368 1810-0206	8 9 3 8	2	NETWCRK-RES B-S1P10.0K ORM X 7 RES NETWK SIP 4 RES NETWK SIP 4 NETWORK-RES 6-SIP10.0K ORM X 5 NETWORK-RES B-SIP10.0K ORM X 7	01121 20480 28480 01121 01121	203A103 1010-0679 1810-0679 206A103 208A103
A1U103 A1U201 A1U301 A1U302 A1U303	1820-3007 1826-0759 1826-0759 1820-3007 1990-0883	4 9 9 4 7	3 3	IC GATE CHOS/74HC EXCL-OR QUAD 2-INP IC COMPARATOR GP QUAD 14 DIP-C PKG IC COMPARATOR GP QUAD 14 DIP-C PKG IC GATC CHOS/74HC EXCL-OR QUAD 2-IMP DISPLAY-LIQ-XTAL	28480 04713 04713 28480 28480	1020-3007 Lm339J Lm339J 1820-3007 1920-0883
A1U400 A1U401 A1U402 A1U503 A1U600	1858-0047 1826-0759 1820-3081 1820-3007 1826-0753	5 9 4 4 3	1 1 2	TRANSISTOR ARRAY 16-PIN PLSTC DIP IC COMPARATOR OF QUAD 14-DIP-C PKG IC FF CHOS/74HC D-TYPE POS-EDGE-TRIG IC CATE CHOS/74HC EXCL-OR QUAD 2-INP IC OP AMP LOW BIAS-H-IMPD QUAD 14-DIP-C	13606 04713 20480 28400 04713	ULN-2003A LM3393 1020-3081 1020-3007 MC34004BL
A1U603 A1U700 A1U703	1820-3373 1826-0753 1820-3396	7 3	1	IC NV CHOS/74NC HONOSTPL CLEAR DUAL IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-C IC GATE CHOS/74NC AND-OR-INV DUAL 2-INP	28480 04713 28480	1620 -3373 MC34004EL 1920-3396
A1XJ400 A1XJ503 A1XJ504	0380-0162 0380-0332 1251-8360 1251-8360 1251-8360	1 7 5 5 5	2 4 36	STANDOFF-RVT-ON 75 IN-LG 6-32THD STANDOFF-RVT-ON 187-IN-LG 4-40THD CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SQ CONNECTOR-SGL CONT PIN 025-IN-BSC-SZ SQ	00000 00000 28480 28480 28480	ORDER BY DESCRIPTION ORDER BY DESCRIPTION 1251-8360 1251-8360 1251-8360
A1S501	3101-2732 18173-61601 1251-7642 1260-0445 1251-2942	8 6 4 0 7	1 1 1 2	DIP SWITCH 8D INTERCONN CBL KEYING PLUG SQUARE PINS. 425 IN LONG SCREW LOCK POST	28480 28480 01380 03206 04507	3101-2732 18173-61601 206509-1 65500-109 318-15-99-011

1

Ш

H

(10

- 3. SERVICE

ollowing paragraphs contain service information for the HP 18173A. Included is the Theory of peration, RS-232C/V.24 Signal Mnemonics, Troubleshooting, Component Locators, and phematics.

- 3. THEORY OF OPERATION

ne Interface Pod has the following capabilities:

- 1. It translates voltages to and from RS-232C and HP 4951A logic levels.
- 2. It displays EIA line signal status (of selected lines only).
- The HP 4951A can program the HP 18173A to monitor data lines and simulate DTE or DCE equipment.
- 4. The HP 18173A automatically identifies itself to the HP 4951A.
- 5. The breakout box is a part of the Interface Pod.

ne HP 18173A is connected to the HP 4951A by a 37 pin connector. Connection to the device under is through a Y-cable. There are three circuits which control the Interface Pod: the SCC (on HP 9. 1A Main Board), the Receivers, and the Drivers.

- 3- 0. SCC. The SCC is an I/O device located on the HP 4951A Main Board that controls all eximunications between the HP 4951A and the Interface Pods. The HP 4951A operates in three odes.
 - 1. Monitor mode, the HP 4951A monitors traffic on a communication line.
 - 2. DTE simulate, the HP 4951A drives the data lines and acts as a terminal.
 - 3. DCE simulate, the HP 4951A drives the data lines and acts as the digital side of a modem or another piece of Data Circuit-Terminating Equipment.

iterface Pod latch A1U2O4 and an output signal from A1J1 pins 18, 19, and 37 configure the iterface Pod for the correct mode of operation.

B-11. Receivers. Receivers A 1U201, A 1U301, and A 1U401 translate voltage levels from RS-232C to HP 4951A Protocol Analyzer logic levels. The mark and space thresholds are +0.25 and +2.75 volts respectively. These thresholds also provide 2.5 volts of hysteresis at the physical interface lines. The receivers operate correctly over an input voltage range of -15 volts to +25 volts and are protected against voltages between -60 and +90 volts by an input voltage divider network.

B-12. Drivers. RS-232C drivers A 1U600 and A 1U700 translate the voltage from HP 4951A logic levels to RS-232C levels. The outputs are current limited with a series resistor to protect against driver contentions or unintentional shorts to ground in the power supply. The drivers are connected to the RS-232C interface via latching relays A 1K 1, A 1K 2, and A 1K 3. The relays are software controlled through the Interface Pod output latch.

Status of the EIA lines is shown on an LCD display on the Interface Pod. Control Line bar indicators are turned on when the control line is ON. The transmit and receive clock and data indicators flash at a 2 Hz rate when edge transitions are detected.

Two of the LCD indicators provide valid mark and space threshold information. RS-232C mark and space thresholds are 3 and -3 volts respectively. A mark/space LCD detect can be connected to any incoming EIA line. When the voltage applied to this input is a valid mark or space, the appropriate indicator turns on. If the voltage is between the two thresholds, neither indicator turns on.

B-13. RS-232C SIGNAL MNEMONICS

The HP 18173A is designed to accomodate two similar interface standards, the RS-232C and the V 34. Table B-3 describes RS-232C/V.24 signal mnemonics.

Table B-3. RS-232C/V.24 Signal Mnemonics

CON- NECTOR PIN NO	SIGNAL EIA	MNEMONICS CCITT	HP DISPL	DESCRIPTION AY
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	AA BA BB CCB CCB CCB CCB CCB CCB CCB CCB	101P 103 104 105 106 107 102 109	TD RD RTS CTS DSR GND CD SCD SCS STX TC SRX(SRC	Protective Ground Transmitted Data Received Data Request To Send Clear To Send Data Set Ready Signal Ground Carrier Detect (Received Line Signal Detector unassigned unassigned unassigned Secondary Carrier Detect Secondary Clear to Send Secondary Transmitted Data Transmit Signal Elements Timing (transmit clock) SRD) Secondary Received Data Receiver Signal Element (Paceive Clock)
18 19 20 21 22 23	SCA CD CG CE CH/CI	120 108.2 110 125 111/112	SRS DTR SQ RI DSR	(Receive Clock) unassigned Secondary Request to Send Data Terminal Ready Signal Quality Ring Indicator CH=Data Signal Rate Selector, DTE CI=Data Signal Rate Selector, DCE Transmit Signal Element Timing (DTE source) unassigned

E

B-14. TROUBLESHOOTING

Before troubleshooting the HP 18173 Interface Pod, verify that the HP 4951A is functioning correctly. To verify operation follow the procedure below.

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELF TEST>.
- 4. Select <LOOP>.
- 5. If there are any failures, repair then repeat the test. If there are no failures, proceed to step 6.
- 6. Select <POD> and look for failures.
- 7. Turn off HP 4951A and connect the following jumpers for the DCE test:

RD to TD DSR to DTR CTS to RTS

a. For the DTE test connect the following jumpers:

CTS to RTS and CD

8. If the POD test has any failures, enter the following program to isolate the part of the circuit needing repair.

B-15. SET UP

3

- 1. Press EXIT twice to return to the Top Level Menu.
- 2. Input the program in Table B-4. Press indicates that the key is on the keyboard and select indicates a softkey.

Table B-4. DCE Test Program

Select	RESET SIMULATE DCE	
Press Select	MORE SET LEAD CTS OFF AND THEN	
Press Select	MORE SET LEAD DSR OFF AND THEN	
Press Select	MORE SET LEAD CD OFF AND THEN SEND	
Type in Press	CTS OFF RTN	
Select Press Select	NEXT BLOCK MORE SET LEAD CTS ON AND THEN	
Press Select	MORE SET LEAD DSR ON AND THEN	
Press	MORE SET LEAD CD ON AND THEN	
	SEND	l
Type in Press	CTS ON RTN	

E

E

Table B-4. DCE Test Program (continued)

RTN Press Select AND THEN Press MORE Select WAIT 500 Type in Press RTN Select **NEXT BLOCK** WHEN TRIG **LEAD** CTS ON THEN GOTO Type in Block 1 Press RTN

B-16. PROCEDURE

- 1. Press EXIT/Halt.
- 2. Select <RUN MENU>.
- 3. Select <SIMULATE>.

B-17. TROUBLESHOOTING

- 1. All of the lines on the CRT should be active:
- 2. Check the LCD display. All of the segments should be active except --, ON, and OFF. (-- is never active).
 - a. If there are any segments not turned on, troubleshoot that part of the HP 18173A circuitry.
- 3. If a DTE problem is suspected, enter the program for DTE troubleshooting.
 - a. All of the lines on the CRT should be active except CD, ON & OFF.
 - b. All LCDs should turn on except DCE.
 - c. If there are any other segments not turned on, troubleshoot that part of the HP 18173A circuitry (except --, on, and off).

B-18. SET UP

- 1. Press EXIT twice to return to the Top Level menu.
- 2. Enter the program in Table B-5.

Table B-5. DTE Test Program

Select

RESET

SET UP

SIMULATE

Use the Cursor Up key to scroll to the DTE clock setup

Select

DTE

Press

EXIT/(Halt)

Press

MORE

Select

SET LEAD

RTS

OFF

AND THEN

Press

MORE

Select

SET LEAD

DTR

OFF

AND THEN

SEND

Type in

RTS OFF

Press

RTN

Select

NEXT BLOCK

Press

MORE

Select

SET LEAD

AND THEN

RTS

ON

Press Select MORE SET LEAD

AND THEN

DTR

ON

SEND

Type in RTS ON

Press

RTN

Select

AND THEN

Press

MORE WAIT

Select Type in

500

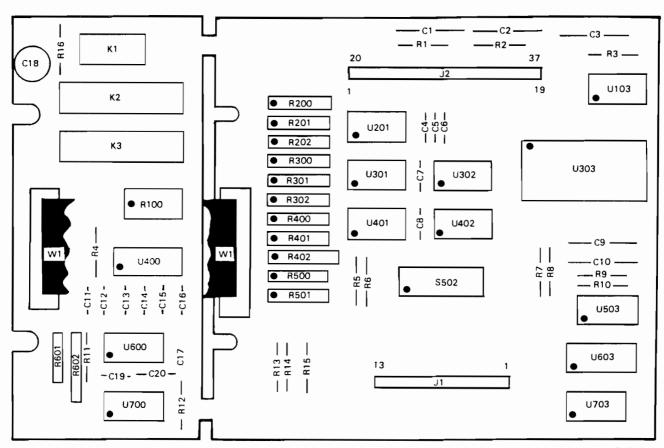
Press

RTN

Table B-5. DTE Test Program (Continued)

Select	NEXT BLOCK WHEN TRIG LEAD
	RTS
	ON
	THEN GOTO
Type in	block 1
Pr es s	RTN

B-19. PROCEDURE


7

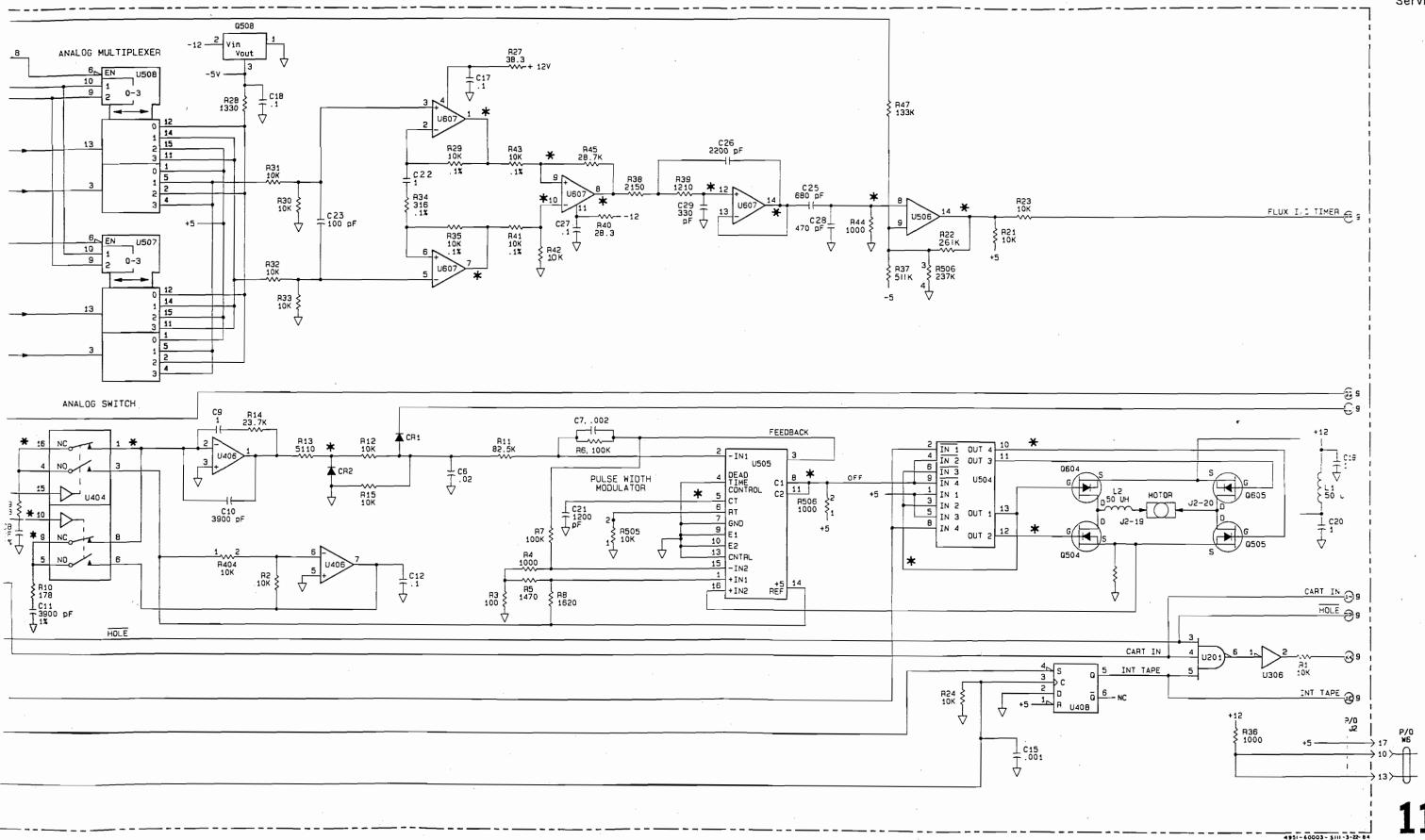
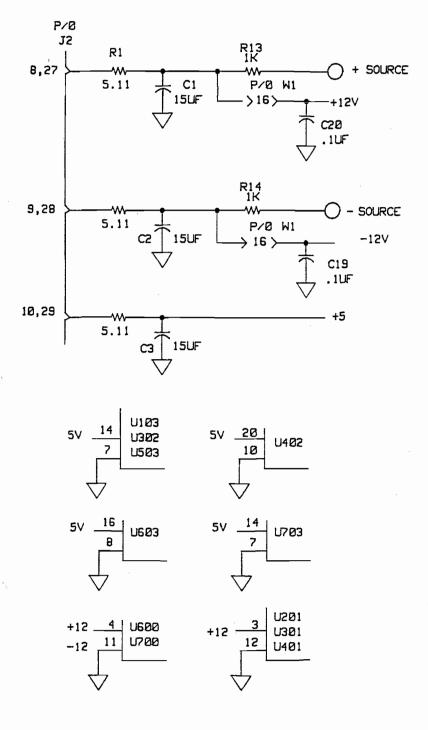
- PRESS EXIT/Halt.
- 2. Select <RUN MENU>.
- 3. Select <SIMULATE>.

B-20. TROUBLESHOOTING

- 1. The inputs to A 1U600 and A 1U700 should be at TTL levels (between 0 and +5 volts).
- 2. The outputs from A 1U600 and A 1U700 should be RS-232C levels (+-12 V).
- 3. The inputs and outputs of all other circuits should be at TTL levels. Check for correct amplitudes and pulsing signals in all cases.
- 4. To check the OFF LCD, connect -12VTP to the MARK/SPACE TP. The off LCDsegment should turn on.
- 5. To check the ON LCD, short ground pin 7 on the Breakout Box to pin 11, A1U401. The ON LCD segment should turn on.
- 6. A 1U 400, the relay circuit pulses only once, indicating that the entered program is latched in.
- 7. If the problem is in the Monitor program, ignore A 1U600 and A 1U700.

18173-60001-0112-2-84

Figure B-3. HP 18173A Component Locator

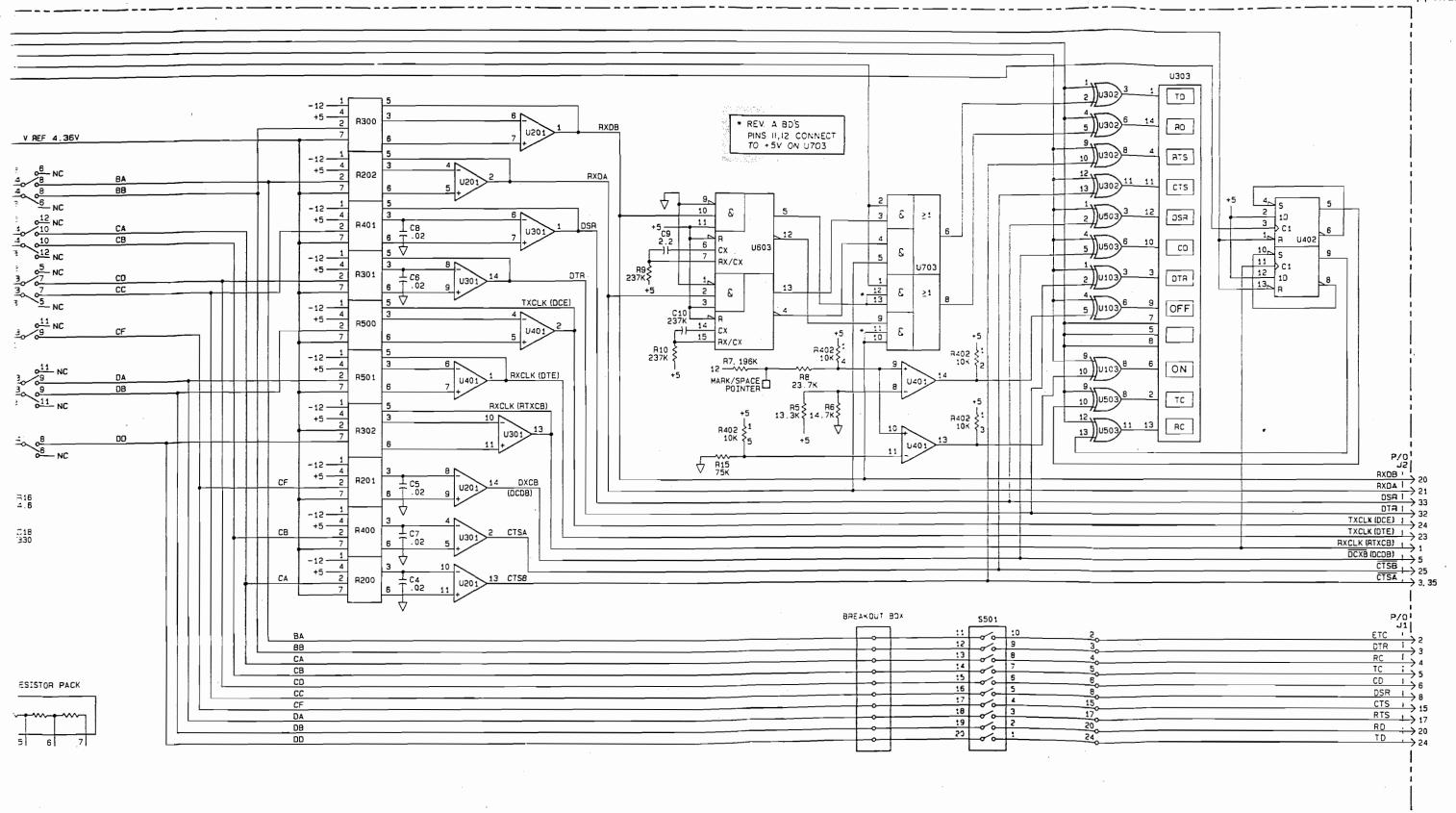


Figure 8-17. A3 Read Amplifier and Speed Control Schematic

HP 18173A Power and Grounds

18173 - 60001-S112-3-22-84

APPENDIX C HP 18174A RS-449 INTERFACE POD

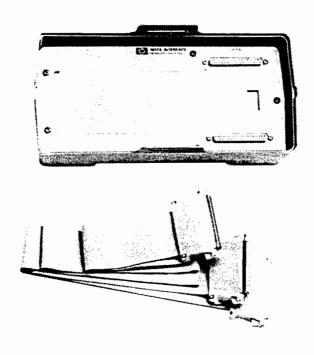
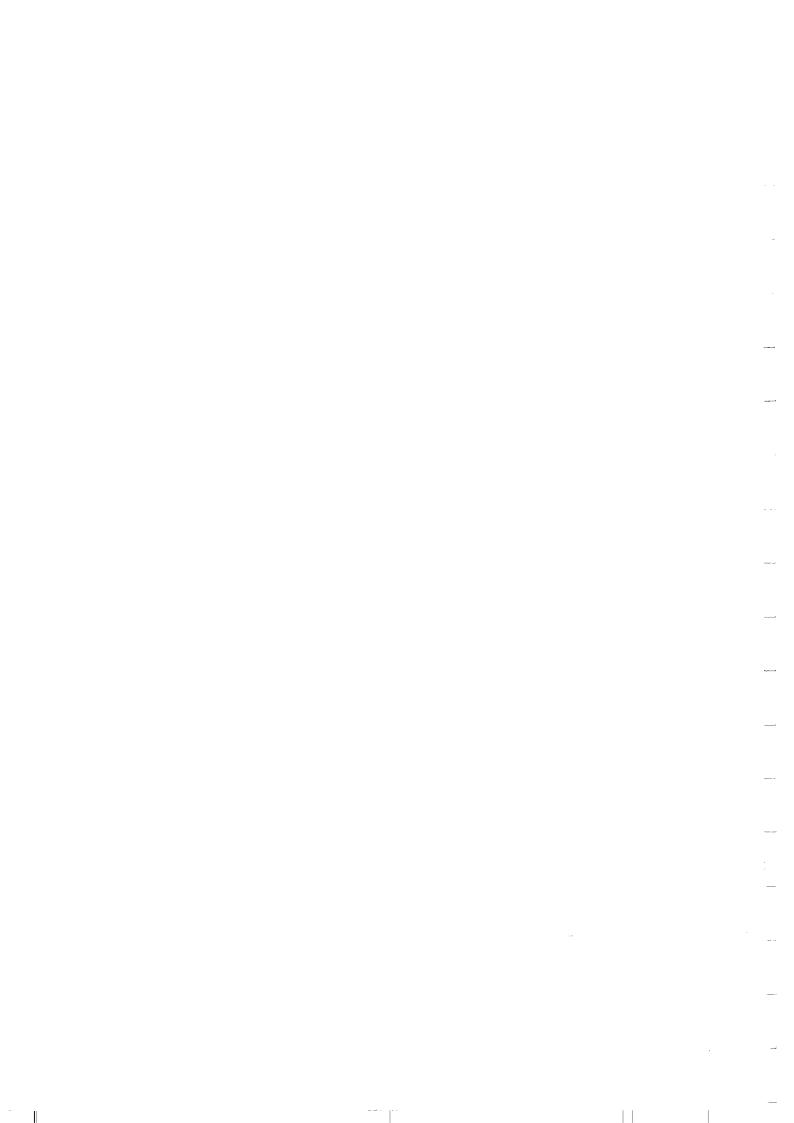


Figure C-1. HP 18174A Interface Pod


C-1. INTRODUCTION

Ĩ

1

The HP 18174A is an RS-449 Interface Pod designed to provide the connection between the HP 4951A Protocol Analyzer and Data Terminal Equipment (DTE) and/or Data Circuit-Terminating Equipment (DCE). The HP 18174A is compatible with EIA RS-449/422A/423A electrical, mechanical, functional, and procedural specifications.

This appendix includes information to install, operate, and service the HP 18174A.

·2 INSTALLATON

or nect the Interface Pod to the HP 4951A Protocol Analyzer, turn the power off and attach the pir connector to the port on the back of the Protocol Analyzer. Tighten the hex screws to ensure the cable will not pull off during operation.

CAUTION

Turn off the Probed Analyzer before connecting or disconnecting any Interface Pod.

-3. OPERATION

the Interface Pod is installed, all operations are performed from the keyboard. See the training Manual (HP 04951-90003) for procedures.

· PERFORMANCE VERIFICATION

a-rformance Verification test is performed by the operator. Follow the procedure described in a- aph C-5.

5 HP 18174A SELF TEST

Description

This test has two parts: a check that there is an Interface Pod connected to the Protocol Analyzer and verification that the lines work.

Set Up

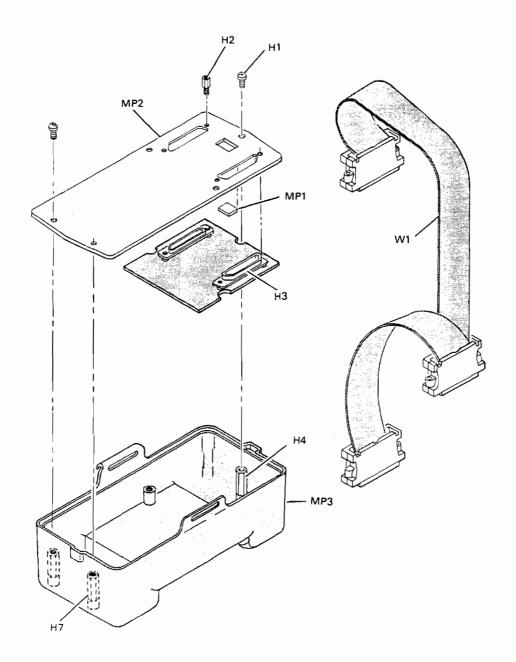
- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELFTEST>.
- 4. Select < PODTEST>.

Procedure

- 1. When the <POD TEST> softkey is pressed, the Interface Pod test is automatically performed.
- 2. If there are no failures POD TEST PASSED will be displayed.

C-6. ADJUSTMENTS

There are no adjustments for the HP 18174A.


C-7. REPLACEABLE PARTS

The following tables and figure give information for ordering replacement parts. Table C-1 is the Manufacturer's Code List. Table C-2 lists the replaceable parts in alphanumeric order. Information is given for the description, Quantity, HP Part Number, and Manufacturers Part Number. Chassis and mechanical parts are listed in Figure C-2. To order a listed part, quote the HP Part Number, indicate the quantity needed and send the order to the nearest Hewlett-Packard office.

When ordering a part not listed, include the instrument model number, serial number, and a physical and functional description of the part. Send the order to the nearest Hewlett-Packard office.

Table C-1. HP 18174A Manufacturers Code List

MFR NO.	MANUFACTURER NAME	ADDRESS	ZIP CODE	
00000	ANY SATISFACTORY SUPPLIER			
01121	ALLEN-BRADLEY CO	MILWAUKEE	wı	53204
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX	ΑZ	85008
11236	CTS OF BERNE INC	BERNE	IN	46711
13606	SPRAGUE ELECT CO SEMICONDUCTOR DIV	CONCORD	NH	03301
19701	MEPCO/ELECTRA CORP	MINERAL WELLS	TX	76067
24546	CORNING GLASS WORKS (BRADFORD)	BRADFORD	PA	16701
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO	CA	94304
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS	MA	01247

eference gnation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
		П				
	2200-0112	3	,	SCR-MCH. 4-405IN	04771	ORDER BY DESCRIPTION
	1251-2942	7	4	SCREW POST LOCK	04486	020418-2
	1251-6074	4	2	CONNECTOR-37 PIN	04486	DC37SV
	0380-T39625		1	STANDOFFS	28480	O380-T39625
	0380-T39626	!	2	STANDOFF	28480	0380-T39626
	5040-4478	5	1	LENS	28480	5040-4478
	18174-00001	3	1	RS-449 PANEL	28480	18174-00001
	4040-2171	0	1	HOUSING	28480	4040-2171
	18174-61601	8	1	RS-449 CABLE	28480	18174-61601

E

Figure C-2. HP 18174A Exploded View

Table C-2. HP 18174A Replaceable Parts List

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
A1	18174-60001	9	1	RS-449 INTERFACE POD	20400	18174-60001
A1C1 A1C2 A1C3 A1C4 A1C5	0180-1846 0180-1846 0180-1746 0180-1746 0180-1746	6 6 5 5 5	2 2 3	CAPACITOR-FXD 2.2UF+-10X 35VDC TA CAPACITOR-FXD 2.2UF+-10X 35VDC TA CAPACITOR-FXD 15UF+-10X 20VDC TA CAPACITOR-FXD 15UF+-10X 20VDC TA CAPACITOR-FXD .1UF+-20X 50VDC CCR	56289 56289 56289 56289 28480	1500225X9035B2 1500225X9035B2 1500156X9020B2 1500156X9020B2 0160-0576
A1C6 A1C7	0160-0576 0160-0576	5 5		CAPACITOR-FXD .1UF +-20% 50VDC CER CAPACITOR-FXD .1UF +-20% 50VDC CER	28480 28480	0160-0576 0160-0576
ALDSI	1990-0883	7	1	DISPLAY-LIQ-XTAL	28400	1990-0883
A1J1 A1J2	1251-6074 1251-6074	4 4	2	CONNECTOR 37-PIN F D SUBMINIATURE CONNECTOR 37-PIN F D SUBMINIATURE	28480 28480	1251~6874 1251~6074
A1R1 A1R2 A1R3 A1R4 A1R5	0698-3266 0698-3266 0699-0556 0699-3556 0757-0442	P 10 21 20 01	2	RESISTOR 237K 1Z .125W F TC=0+-100 RESISTOR 237K 1Z .125W F TC=0+-100 RESISTOR 5.11 1Z .125W F TC=0+-100 RESISTOR 5.11 1Z .125W F TC=0+-100 RESISTOR 10K 1Z .125W F TC=0+-100	24546 24546 20480 28480 24546	C4-1/8-T0-2373-F C4-1/8-T0-2373-F 0479-0556 0697-0556 C4-1/8-T0-1002-F
A1R6 A1R201 A1R202 A1R203 A1R204	0757-0442 1010-0680 1010-0680 1010-0680 1010-0368	9 2 2 2 3	10	RESIGTOR 10K 1% .125W F TC=0+-100 RES NCTWK SIP 2 RES NETWK SIP 2 RES NETWK SIP 2 NETWORK-RES 6-9IP10.0K OHM X 5	24546 28480 28480 28480 31121	C4-1/8-T3-1002-F 1810-0680 1810-0680 1810-0680 2064103
A1R301 A1R302 A1R303 A1R304 A1R401	1810-0680 1010-0580 1010-0680 1010-0367 1810-0680	2 2 2 4 2	2	RES NETWK SIP 2 RES NETWK SIP 2 RES NETWK SIP 2 NETWORK-RES & SIP100.0K OHM X S RES NETWK SIP 2	28480 28480 28480 11236 28480	18100680 18100680 18100680 750'-61-R100K 18100680
A1R402 A1R403 A1R404 A1R405	1810-0580 1810-0680 1810-0680 1810-0369	2224		RES NETWK SIP 2 RES NETWK SIP 2 RES NETWK SIP 2 NETWORK-RES 6-SIP100.0K DRM X 5	28480 28480 28480 11236	1810-0600 1810-0680 1810-0680 750-61-R100K
A1U100 A1U101 A1U103 A1U104 A1U200	1820-3373 1820-3396 1820-3081 1820-3087 1820-3097	7 4 4 4 9	1 1 3 3	IC MV CMOS/74HC MONOSTBL CLEAR DUAL IC GATE CHOS/74HC AND-DR INV DUAL 2: INP IC F CMOS/74HC D-1YPE POS-EDGE-TRIG IC GATE CMOS/74HC EXCL-DR QUAD 2: INP IC COMPARATOR GP QUAD 14:DIP-C PKG	28480 28480 28480 28480 04713	1820-3373 1820-3374 1820-3381 1820-3887 LH339J
A1U202 A1U300 A1U302 A1U400 A1U402	1920 ~ 2931 1926 ~ 9757 1920 ~ 2931 1926 ~ 9759 1920 ~ 2931	0 9 0 9 0	3	ICD 75174 DPIVER IC COMPARATOR OF GUAD 14-DIP-C PKG ICD 75174 DRIVER IC COMPARATOR OF QUAD 14 DIP-C PKG ICD 75174 DRIVER	28480 04713 28480 04713 28480	1820-2831 LM3393 1820-2831 LM3393 1820-2831
A1U403 A1U404	1020-3007 1820-30#7	4		IC GATE CMOS/74HC EXCL-OR QUAD 2-INP IC GATE CMOS/74HC EXCL-OR QUAD 2-INP	28483 28480	1820-3007 1820-3007
	0380-8332 1251-2942	7	4	STANDOFF-RUT-CN .187-IN-LG 4-40THD SCREW POST LOCK	30 000 28480	ORDER BY DESCRIPTION 1251-2942

C- 3. SERVICE

The following paragraphs contain service information for the HP 18174A. Included is Theory of perfection, RS-449 Signal Mnemonics, Troubleshooting, Component Locators, and Schematics.

C- 3. THEORY OF OPERATION

 $h \in HP$ 4951A operates in three modes.

- 1. Monitor mode: The HP 4951A monitors traffic on a communication line.
- 2. DTE simulate: The HP 4951A drives the data lines and acts as a terminal.
- 3. DCE simulate: The HP 4951A drives the data lines and acts as the digital side of a modem or another piece of Data Circuit-Terminating Equipment.

the interface Pod is configured for the correct mode of operation by Interface Pod latch A 1U204 and ut lit signals from pins 18, 19, and 37 of the connector between the interrface Pod and the Protocol naiyzer.

h∈ RS-449 Interface Pod has the following capabilities.

- 1. Translates voltages to and from RS-449 and HP 4951A logic levels.
- 2. Displays EIA line signal status (of selected lines only)
- 3. Programmable for monitoring and DTE or DCE simulation.
- 4. Identifies the type of Interface Pod connected to the HP 4951A.
 - 5. Supports differentially driven category I circuits.
- -10. SCC. The SCC is an I/O device located on the HP 4951A Main Board that controls all minunications between the HP 4951A and the Interface Pods.

vers A1U1 and A1U2 convert the signal from single ended logic levels to a differential voltage everorm. These drivers are tristate devices and need no relays to isolate them from the interface in the monitor mode.

Receivers A 1U10 and A 1U11 operate over a common mode voltage range from -7 to +7 volts and require a minumum differential of 200 mvolts to change states. They maintain operation over a differential voltage range from 200 mvolts to 6 volts; however, the positive common mode signal voltage cannot exceed the RS-449 specification of 10 volts. A 1U10 and A 1U11 are protected by divider resistors from signal levels up to 12 volts.

The EIA status of the selected interface lines is displayed on a bargraph LCD. Clock and data indicators are flashed at a 2Hz rate when line state transitions are detected. Table C-3 lists these RS-449 lines.

Table C-3. RS-449 Description

TR	Terminal Ready
DM	Data Mode
RS	Request to Send
CS	Clear to Send
RR	Receiver Ready
SD	Send Data
RD	Receive Data
RT	Receive Timing
	Meceive Hilling

Table C-4. RS-449 Signal Mnemonics

E

	CON- NECTOR PIN NO.	RS-449 4951A DISPLAY MNEMONI	DESCRIPTION CS
	1 2	open SI SI	open
	3	_	Signaling-rate Indicator
*		open	open Send Data (a)
	4 5	DTE SDa ST STa	1 I
*			Send Timing (a)
*			Receive Data (a)
•	8	RS RSa	Request to Send (a)
*		RT RTa CS CSa	Receive Timing (a)
•	10		Clear to Send (a)
*	11	open DM DMa	open
	12		Data Mode (a)
*	13		Terminal Ready (a)
·	14	RR RRa RL RL	Receiver Ready (a)
	15	IC IC	Remote Loopback Incoming Call
	16	SF SF/SR	Select Frequency/
	10	or or/on	Signaling-rate Selector
	17	тт тта	Terminal Timing (a)
*	18	open	open
	19	SG	Signal Ground
	20	RC	Receive Common
	21	open	open
	22	DTE SDb	Send Data (b)
	23	ST STb	Send Timing (b)
	24	DCE RDb	Receive Data (b)
	25	RS RSb	Request to Send (b)
	26	RT RTb	Receive Timing (b)
	27	CS CSb	Clear to Send (b)
	28	IS IS	Terminal in Service
	29	DM DMb	Data Mode (b)
	30	TR TRb	Terminal Ready (b)
	31	RR RRb	Receiver Ready (b)
	32	SS SS	Select Standby
	33	SQ SQ	Signal Quality
	34	open	open
	35	TT TTb	Terminal Timing (b)
	36	open	open
	37	SC	Send Common
*Indi	cates lines w	hich parameters can b	be selected from HP 4951A screen.

C-10. TROUBLESHOOTING

Before troubleshooting the HP 18174A Interface Pod, verify that the HP 4951A is functioning correctly. To verify operation follow the procedure below.

- 1. Turn on the HP 4951A.
- 2. Press MORE.
- 3. Select <SELF TEST>.
- 4. Select <LOOP>.
- 5. If there are any failures, repair then repeat the test. If there are no failures, proceed to step 6.
- 6. Select <POD> and look for failures.
- 7. If the POD test shows any failures, enter the program in paragraph C-11 under SET UP to isolate the part of the circuit needing repair.

C-11. SET UP

- 1. Press EXIT twice to return to the Top Level Menu.
- 2. Input the program in Table C-5. Press indicates that the key is on the keyboard and select indicates a softkey.

Table C-5. DCE Test Program

Select	RESET SIMULATE DCE
Press	MORE
Select	SET LEAD CS OFF AND THEN
Press	MORE
Select	SET LEAD DM OFF AND THEN
Press	MORE
Select	SET LEAD RR OFF SEND
Type in	CS OFF
Press	RTN
Select	NEXT BLOCK
Press	MORE SET LEAD CS ON AND THEN
Press	MORE
Select	SET LEAD DM ON AND THEN
Press	MORE SET LEAD ON RR ON AND THEN SEND
Type in	CS ON
Press	RTN

<u>.</u>

£ ,

Table C-5. DCE Test Program (Continued)

elect ess elect ype in	AND THEN MORE WAIT
elect	WAIT
y P & 111	500
	RTN
elect	NEXT BLOCK
	WHEN TRIG
	LEAD
	CS
	ON
	THEN GOTO BLOCK
ype in	1
ess	RTN
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	ype in

C-12. PROCEDURE

3

3

3

- Press EXIT.
- 2. Select <RUN MENU>.
- 3. Select <SIMULATE>.

C-13. TROUBLESHOOTING

- 1. All of the lines on CRT should be active except DTE & RS.
- 2. Check the LCD display. All of the segments should be active except SD, RS, and TR (--- is never active).
 - a. If there are any other segments not lit, troubleshoot that part of the HP 18174A circuitry.
- 3. if a DTE problem is suspected, enter the program for DTE.
 - a. All of the lines on the CRT should be active except DCE, CS, DM, and RR.
 - b. All LCDs should turn on except RD, RT, CS, DM, and RR.
 - c. If there are any other segments not turned on, troubleshoot that part of the HP 18174A circuitry (except SD, RS, TR and ---).

C-14. SET UP

- 1. Press EXIT twice to return to the Top Level Menu.
- 2. Select the following sequence of softkeys to load the DTE test program in Table C-6.

Table C-6. DTE Test Program

Select

MORE

RESET

SIMULATE

Use the Cursor Up key to scroll to the DTE clock setup

Select

DTE

Press

EXIT/(Halt)

Select

SIMULATE DTE

Press

MORE

Select

SET LEAD

RS

OFF

AND THEN

MORE

SET LEAD

TR

OFF

AND THEN

SEND

Type in

RS OFF

Press

RTN

Select

NEXT BLOCK

E.

E

E

E :

Press

MORE

Select

SET LEAD

RS

ON

AND THEN

Press

MORE

Select

SET LEAD

TR

ON

AND THEN

SEND

Type in RS ON

Press

RTN

Select

AND THEN MORE

Press Select

WAIT

Type in

500

Press

RTN

Table C-5. DCE Test Program (Continued)

Select NEXT BLOCK
WHEN TRIG
LEAD
RS
ON
THEN GOTO

Type in block 1 Press RTN

Press EXIT/(Halt)

C-15. PROCEDURE

- 1. Press EXIT/(Halt).
- 2. Select <RUN MENU>.
- 3. Select <SIMULATE>.

C-16. TROUBLESHOOTING

- 1. Only DTE and RS lines are active on the CRT.
- 2. LCD segments RD, RT, CS, DM, and RR are not active on display.
- 3. The inputs to A1U202, A1U302, and A1U402 should be at TTL levels (between 0 and 5 volts).
- 4. The outputs to A 1U202, A 1U302, and A 1U402 should be RS-449 levels (+-12V).
- 5. The inputs and outputs of all other circuits should be at TTL levels. Check for correct amplitudes and pulsing signals.
- 6. If the problem is in the Monitor program, ignore A 1U202, A 1U302, and A 1U700.

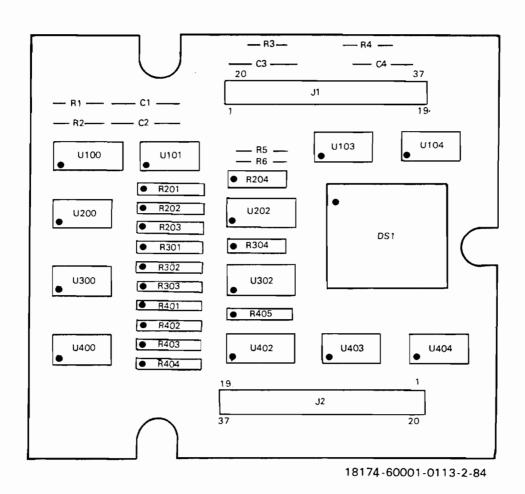
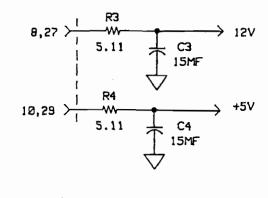
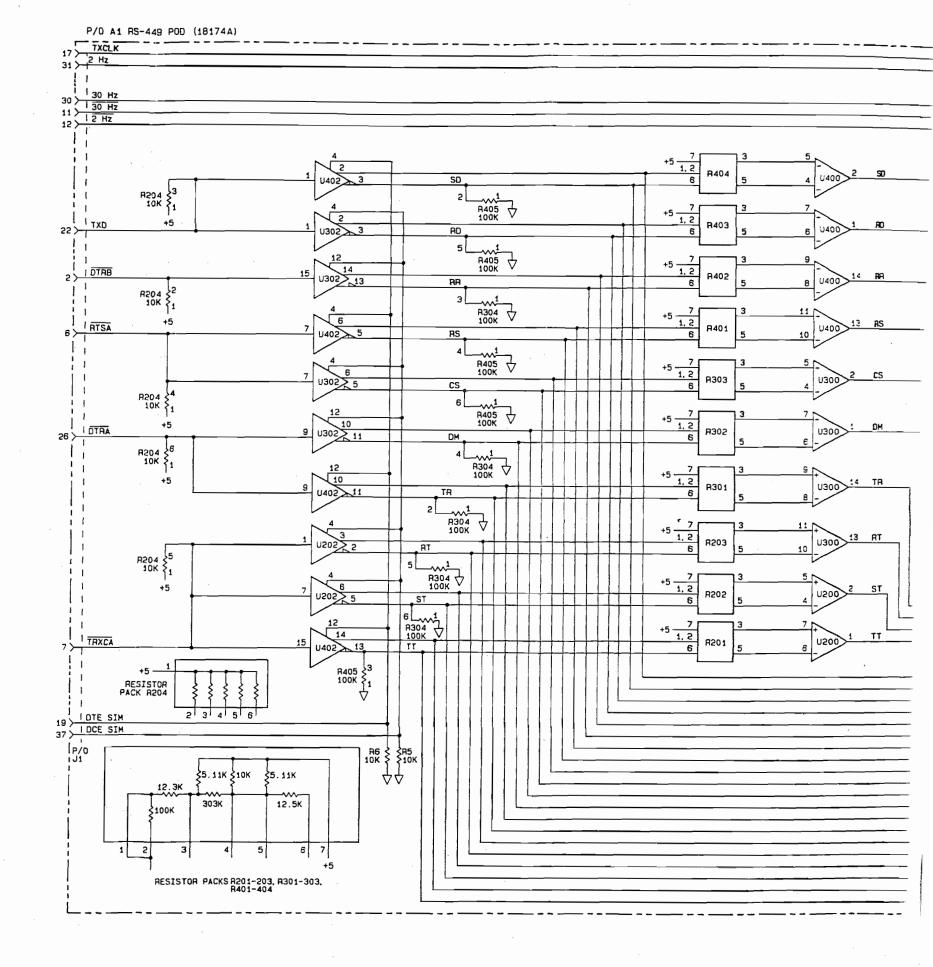
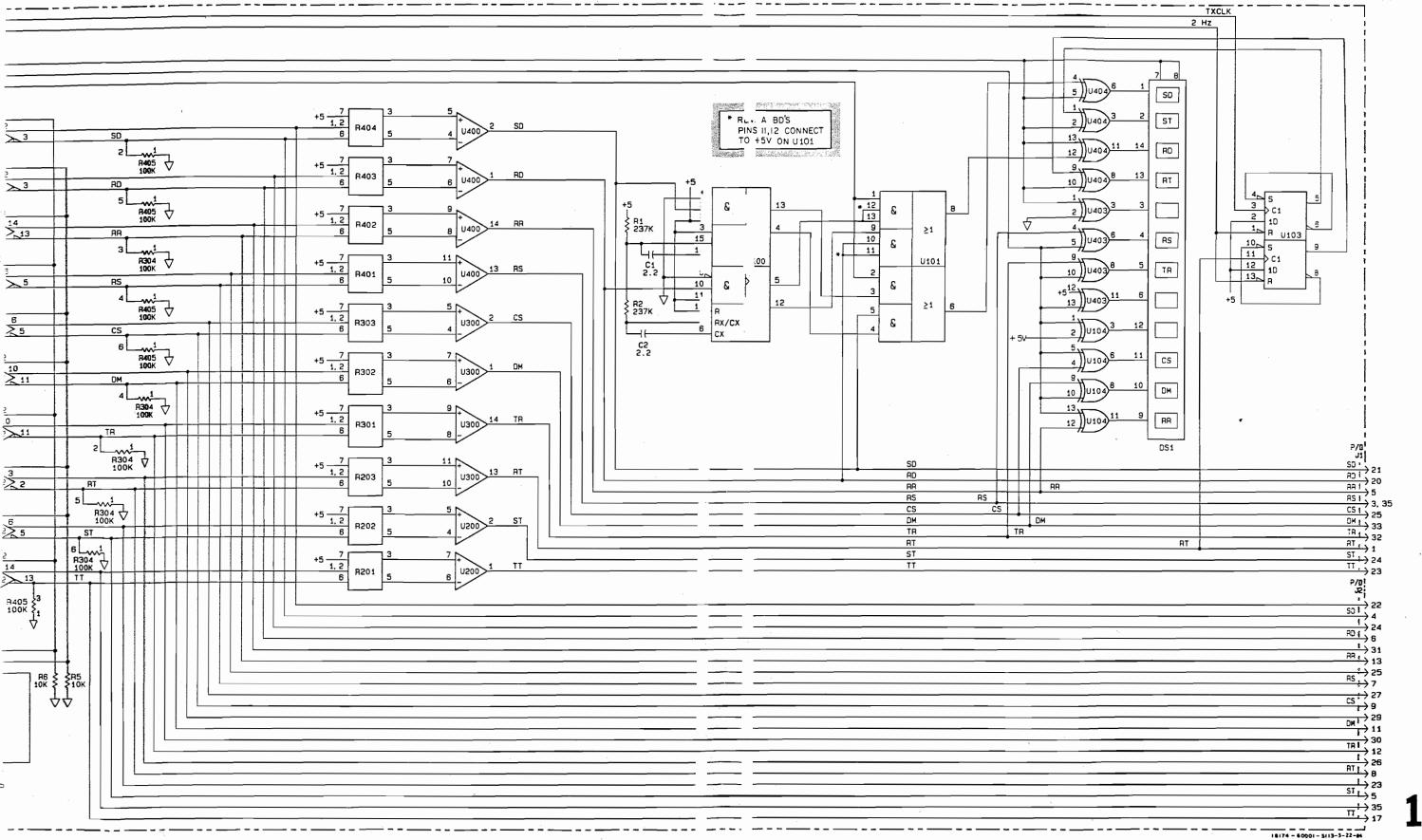



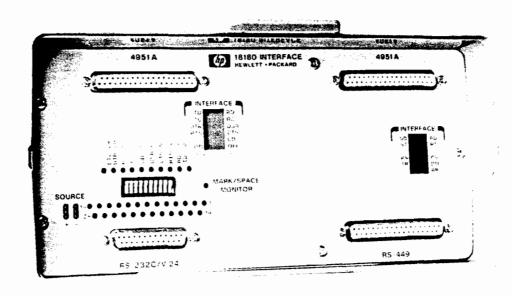
Figure C-3. HP 18174A Component Locator



HP 18174A. Power and Grounds



5V 16 U101


15/ 3

HP 18174A Appendix C

APPENDIX D HP 18180A RS-232C/V.24/RS-449 INTERFACE POD

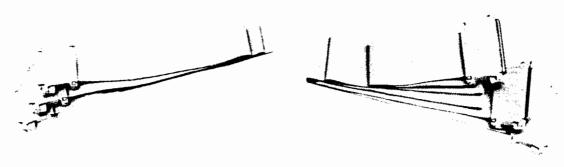


Figure D-1. HP 18180A Interface Pod

D-1. INTRODUCTION

The HP 18180A is an RS-232C/V.24/RS-449 Interface Pod designed to provide the connection between the HP 4951A Protocol Analyzer and the Data Terminal Equipment (DTE) and/or Data Circuit-Terminating Equipment (DCE). The HP 18180A contains both the HP 18173A and the HP 18174A Interface Pods. For descriptions, refer to Appendixes B and C.

This appendix includes information to install, operate, and service the HP 18180A.

D-6. ADJUSTMENTS

The HP 18180A needs no adjustments.

D-7. REPLACEABLE PARTS

To order replacement parts refer to Appendix B for RS-232C/V.24 components and to Appendix C for RS-449 components. Chassis and mechanical parts are listed in Figure D-2. To order a listed part, quote the HP Part Number, indicate the quantity needed and send the order to the nearest Hewlett-Packard office.

When ordering a part not listed, include the instrument model number, serial number, and a physical and functional description of the part. Send the order to the nearest Hewlett-Packard office.

Table D-1. Replaceable Parts List

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
	18180 4040-2171 18173-60001 18173-61602 18174-60001 18174-61601 18180-00001	4 0 8 7 9	1 1 1 1 1 1 1 1	RS-232C/RS-449 INTERFACE POD HOUSING RS232 POD ASSY RS232 CBL RS449 PC ASSY RS449 CBL RS449 PANEL	28480 28480 28480 28480 28480 28480	18180 4040-2171 18173-60001 18173-61602 18174-60001 18174-61601 18180-00001

D-8. SERVICE

The HP 18180A contains both the RS-232C/V.24 and the RS-449 Interface Pods. Service information and schematics are located in Appendix B for RS-232C/V.24 side of the Interface Pod and Appendix C for the RS-449 side of the Interface Pod.

-2. INSTALLATION

connect the interface Pod to the HP 4951A Protocol Analyzer, turn the power off and attach the pin connector to the port on the back of the Protocol Analyzer. Tighten the hex screws to ensure at the cable will not pull off during operation.

CAUTION

Turn off the Protocol Analyzer before connecting or disconnecting any Interface Pod.

3-3. OPERATION

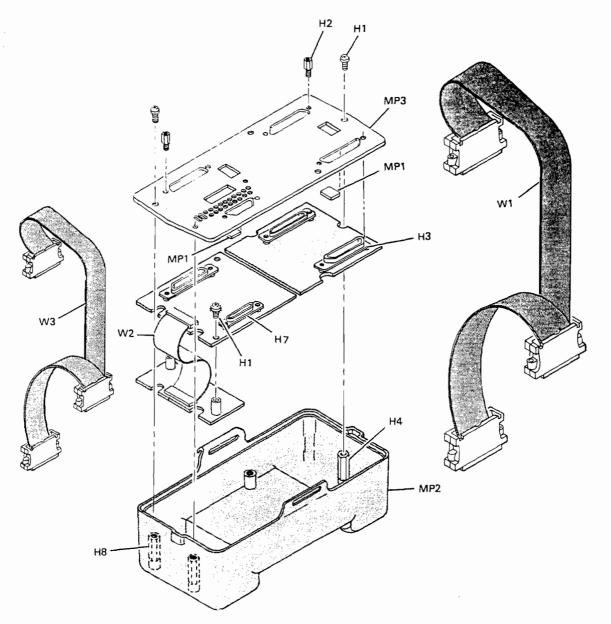
nce the interface Pod is installed, all operations are performed from the keyboard. See the perating Manual (HP 04951-90003) for procedures.

)-4. PERFORMANCE VERIFICATION

he Performance Verification test is performed by the operator. Follow the procedure described in aragraph D-5.

)-5. HP 18180A SELF TEST

Description


This test has two parts: a check that there is an interface Pod connected to the Protocol Analyzer and verification that the data lines work.

Set Up

- 1. Turn on the HP 4951A.
- 2. Press MORE>.
- 3. Select <SELFTEST>.
- 4. Select < PODTEST>.

Procedure

- 1. When the <POD TEST> softkey is pressed, the Interface Pod test is automatically performed.
- 2. If there are no failures, POD PASSED is displayed.

Reference Designation	HP Part Number	C D	Qty	Description	Mfr Code	Mfr Part Number
H1 H2 H3 H4 H7 H8 MP1 MP2 MP3 W1 W2	2200-0112 1251-2942 1251-6074 0380-739625 1251-4946 0380-739626 5040-4478 4040-2171 18180-00001 18174-61601 18173-61601	3 7 4 5 5 5 5 8 3 5	3 8 3 1 1 2 2 1 1	SCR-MCH, 4-40, 5IN SCR POST LOCK CONNECTOR-37 PIN STANDOFF CONNECTOR-25 PIN STANDOFF LENS HOUSING RS-232C/RS-449 PANEL CABLE, RS-449 CABLE, RS-232C/V-24	04771 04486 04486 28480 04486 28480 28480 28480 28480 28480 28480 28480	ORDER BY DESCRIPTION 10204-18-2 DC375V 0380-T39625 DB-255V 0380-T39626 5040-4478 4040-2171 18180-00001 18174-61601 18173-61601 18173-61602

Figure D-2. HP 18180A Exploded View

.